某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q億元),它們與投資額t(億元)的關系有經驗公式其中,今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元),
(1)求y關于x的解析式,
(2)怎樣投資才能使總利潤最大,最大值為多少?.
(1) ∈[0,5],;(2)當時,甲項目投資億元,乙項目投資億元,總利潤的最大值是億元;當 時,甲項目投資億元,乙項目投資不投資,總利潤的最大值是億元.
解析試題分析:(1)對甲、乙公司投資所獲利潤分別為∴投資這兩個項目所獲得的總利潤為 ∈[0,5],;(2)只需求函數的最大值就可以了,考慮到和(的關系,可用換元法,將其轉換為二次函數求最值問題,令,則且 ,,只需討論對稱軸和定義域的位置關系即可求其最大值.
試題解析:(1)根據題意,得: ∈[0,5],. 4分
(2)令,則且
8分
當時,即,當時,,此時
當時,即,當 時,,此時 12分
答:當時,甲項目投資億元,乙項目投資億元,總利潤的最大值是億元;當 時,甲項目投資億元,乙項目投資不投資,總利潤的最大值是億元 14分
考點:1、函數解析式;2、函數的最值.
科目:高中數學 來源: 題型:解答題
記數列{}的前n項和為為,且++n=0(n∈N*)恒成立.
(1)求證:數列是等比數列;
(2)已知2是函數f(x)=+ax-1的零點,若關于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
近年來,網上購物已經成為人們消費的一種趨勢。假設某淘寶店的一種裝飾品每月的銷售量y(單位:千件)與銷售價格x(單位:元/件)滿足關系式其中2<x<6,m為常數,已知銷售價格為4元/件時,每月可售出21千件。(1)求m的值; (2)假設該淘寶店員工工資、辦公等每月所有開銷折合為每件2元(只考慮銷售出的件數),試確定銷售價格x的值,使該店每月銷售飾品所獲得的利潤最大.(結果保留一位小數)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數,,其中實數.
(1)若,求函數的單調區(qū)間;
(2)當函數與的圖象只有一個公共點且存在最小值時,記的最小值為,求的值域;
(3)若與在區(qū)間內均為增函數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(為常數,為自然對數的底)
(1)當時,求的單調區(qū)間;
(2)若函數在上無零點,求的最小值;
(3)若對任意的,在上存在兩個不同的使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出場單價就降低0.02元,根據市場調查,銷售商一次訂購量不會超過600件.
(1)設一次訂購x件,服裝的實際出廠單價為p元,寫出函數的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
我省某景區(qū)為提高經濟效益,現對某一景點進行改造升級,從而擴大內需,提高旅游增加值,經過市場調查,旅游增加值萬元與投入萬元之間滿足:
為常數。當萬元時,萬元;
當萬元時,萬元。 (參考數據:)
(1)求的解析式;
(2)求該景點改造升級后旅游利潤的最大值。(利潤=旅游增加值-投入)。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com