設(shè),曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直.
(1)求的值;
(2)若對(duì)于任意的,恒成立,求的范圍;
(3)求證:
解析試題分析:(1)求得函數(shù)f(x)的導(dǎo)函數(shù),利用曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)2x+y+1=0垂直,即可求a的值;
(2)先將原來(lái)的恒成立問(wèn)題轉(zhuǎn)化為lnx≤m(x?),設(shè)g(x)=lnx?m(x?),即?x∈(1,+∞),g(x)≤0.利用導(dǎo)數(shù)研究g(x)在(0,+∞)上單調(diào)性,求出函數(shù)的最大值,即可求得實(shí)數(shù)m的取值范圍.
(3)由(2)知,當(dāng)x>1時(shí),m=時(shí),lnx< (x?)成立.不妨令x=,k∈N*,得出
[ln(2k+1)?ln(2k?1)]<,k∈N*,再分別令k=1,2,,n.得到n個(gè)不等式,最后累加可得.
(1) 2分
由題設(shè),∴
,. 4分
(2),,,即
設(shè),即.
6分
①若,,這與題設(shè)矛盾. 7分
②若方程的判別式
當(dāng),即時(shí),.在上單調(diào)遞減,
,即不等式成立. 8分
當(dāng)時(shí),方程,設(shè)兩根為 ,
當(dāng),單調(diào)遞增,,與題設(shè)矛盾.
綜上所述, . 10分
(3) 由(2)知,當(dāng)時(shí), 時(shí),成立.
不妨令
所以,
11分
12分
累加可得
∴
∴ ---------------14分
考點(diǎn):1.利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程;2.導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=ln(1+x)-x-ax2.
(1)當(dāng)x=1時(shí),f(x)取到極值,求a的值;
(2)當(dāng)a滿(mǎn)足什么條件時(shí),f(x)在區(qū)間[-,-]上有單調(diào)遞增區(qū)間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當(dāng)a=-1時(shí),求曲線(xiàn)y=f(x)在x=1處切線(xiàn)的方程;
(2)當(dāng)a>0時(shí),討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)(2011•重慶)設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿(mǎn)足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R.
(Ⅰ)求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程.
(Ⅱ)設(shè)g(x)=f′(x)e﹣x.求函數(shù)g(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)()
(1)當(dāng)時(shí),求函數(shù)的極值;(2)當(dāng)時(shí),討論的單調(diào)性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù),.
(1)若曲線(xiàn)與曲線(xiàn)在它們的交點(diǎn)處的切線(xiàn)互相垂直,求,的值;
(2)設(shè),若對(duì)任意的,且,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(為常數(shù)).
(1)函數(shù)的圖象在點(diǎn)處的切線(xiàn)與函數(shù)的圖象相切,求實(shí)數(shù)的值;
(2)若,,、使得成立,求滿(mǎn)足上述條件的最大整數(shù);
(3)當(dāng)時(shí),若對(duì)于區(qū)間內(nèi)的任意兩個(gè)不相等的實(shí)數(shù)、,都有
成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),設(shè).討論函數(shù)的單調(diào)性;
(2)證明當(dāng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com