已知函數(shù).
(1)求函數(shù)的定義域 ;
(2)若函數(shù)的最小值為,求實數(shù)的值.
(1);(2)
解析試題分析:(1)函數(shù)的定義域是使函數(shù)解析式有意義的自變量的取值范圍,由對數(shù)函數(shù)的性質(zhì)得,解出,寫成集合的形式就是函數(shù)的定義域;(2)將函數(shù)化簡得,,由的取值范圍得,,解得的值為
試題解析:(1)要使函數(shù)有意義:則有,解之得. 3分
所以函數(shù)的定義域為 4分
(2)函數(shù)可化為. 6分
,. 8分
,,即. 9分
由,得,. 11分
故實數(shù)的值為 12分
考點:1.對數(shù)式的運算性質(zhì);2.對數(shù)函數(shù)單調(diào)性;3.不等式.
科目:高中數(shù)學 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價格為4元/千克時,每日可銷售出該商品5千克;銷售價格為4.5元/千克時,每日可銷售出該商品2.35千克.
(1)求的解析式;
(2)若該商品的成本為2元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)().
(Ⅰ)若的定義域和值域均是,求實數(shù)的值;
(Ⅱ)若在區(qū)間上是減函數(shù),且對任意的,,總有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,總成立,求實數(shù)的取值范圍;
(Ⅲ)是否存在正實數(shù),使得:當時,不等式恒成立?請給出結(jié)論并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù).
⑴求函數(shù)的解析式;
⑵設(shè)函數(shù),若的兩個實根分別在區(qū)間內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設(shè)g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某企業(yè)有兩個生產(chǎn)車間,分別位于邊長是的等邊三角形的頂點處(如圖),現(xiàn)要在邊上的點建一倉庫,某工人每天用叉車將生產(chǎn)原料從倉庫運往車間,同時將成品運回倉庫.已知叉車每天要往返車間5次,往返車間20次,設(shè)叉車每天往返的總路程為.(注:往返一次即先從倉庫到車間再由車間返回倉庫)
(Ⅰ)按下列要求確定函數(shù)關(guān)系式:
①設(shè)長為,將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(Ⅱ)請你選用(Ⅰ)中一個合適的函數(shù)關(guān)系式,求總路程 的最小值,并指出點的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com