已知函數(shù)).
(Ⅰ)若的定義域和值域均是,求實數(shù)的值;
(Ⅱ)若在區(qū)間上是減函數(shù),且對任意的,,總有,求實數(shù)的取值范圍.

(Ⅰ);(Ⅱ)

解析試題分析:(Ⅰ)利用二次函數(shù)在區(qū)間上的單調(diào)性求解;(Ⅱ)分析二次函數(shù)在區(qū)間上的單調(diào)性,然后把恒成立問題轉(zhuǎn)化最值.
試題解析:(Ⅰ) ∵),
上是減函數(shù)
又定義域和值域均為,
 , 即 ,解得
(II)  ∵在區(qū)間上是減函數(shù),∴,
,且
,
∵對任意的,總有,
,即 ,解得 , 
, ∴
考點:二次函數(shù)的單調(diào)性,考查學生的分析計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求證不論為何實數(shù),總是增函數(shù);
(2)確定的值,使為奇函數(shù);
(3)當為奇函數(shù)時,求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),的定義域為 
(1)求的值;
(2)若函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某跳水運動員在一次跳水訓練時的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓練時跳水曲線應(yīng)在離起跳點m()時達到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標系.

(1)當=1時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區(qū)域內(nèi)入水時才能達到壓水花的訓練要求,求達到壓水花的訓練要求時的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域 ;
(2)若函數(shù)的最小值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標價的八折出售,折后價格每滿500元再減100元.如某商品標價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實際折扣率.設(shè)某商品標價為元,購買該商品得到的實際折扣率為
(Ⅰ)寫出當時,關(guān)于的函數(shù)解析式,并求出購買標價為1000元商品得到的實際折扣率;
(Ⅱ)對于標價在[2500,3500]的商品,顧客購買標價為多少元的商品,可得到的實際折扣率低于?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的定義域為
(1)求;
(2)當時,求函數(shù)的最大值。

查看答案和解析>>

同步練習冊答案