設(shè)函數(shù)f(x)=
1
3
x3-
1
2
(2a-1)x2+[a2-a-f′(a)]x+b,(a,b∈
R)
(1)求f′(a)的值;
(2)若對任意的a∈[0,1],函數(shù)f(x)在x∈[0,1]上的最小值恒大于1,求b的取值范圍.
(1)∵f(X)=
1
3
x3-
1
2
(2a-1)x2+[a2-a-f(a)]x+b(a,b∈
R)
∴f′(x)=x2-(2a-1)x+a2-a-f′(a),
∴f′(a)=a2-(2a-1)a+a2-a-f′(a),
∴f'(a)=0.
(2)∵f(X)=
1
3
x3-
1
2
(2a-1)x2+[a2-a-f(a)]x+b(a,b∈
R)
∴f′(x)=x2-(2a-1)x+a2-a-f′(a),
∴f′(a)=a2-(2a-1)a+a2-a-f′(a),
∴f′(a)=0.
∴f′(x)=x2-(2a-1)x+(a2-a)=[x-(a-1)](x-a),
令f′(x)>0,得x<a-1,或x>a;令f′(x)<0,得a-1<x<a,
∴f(x)在(-∞,a-1]上單調(diào)遞增,在[a-1,a]上單調(diào)遞減,在[a,+∞)上單調(diào)遞增,
∵0≤a≤1,∴f(x)在x∈[0,1]上的最小值為f(a)=
1
3
a3-
1
2
a2+b
,
1
3
a3-
1
2
a2+b>1
在a∈[0,1]上恒成立.
即b>-
1
3
a3+
1
2
a2+1
在a∈[0,1]上恒成立,
g(x)=-
1
3
x2+
1
2
x2+1(0≤x≤1)
,
則g′(x)=-x2+x=-x(x-1)≥0,
∴g(x)在x∈[0,1]上單調(diào)遞增,
1≤g(x)≤
7
6
,
b>
7
6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f1(x)=
1
2
x2,f2(x)=alnx(其中a>0).
(Ⅰ)求函數(shù)f(x)=f1(x)•f2(x)的極值;
(Ⅱ)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(
1
e
,e)內(nèi)有兩個零點,求正實數(shù)a的取值范圍;
(Ⅲ)求證:當(dāng)x>0時,1nx+
3
4x2
-
1
ex
>0.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知x=1是函數(shù)f(x)=x3-ax(a為參數(shù))的一個極值點.
(1)求a的值;
(2)求x∈[0,2]時,函數(shù)f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+ln(x+1).
(1)求函數(shù)g(x)=f(x)-ax2-x的單調(diào)區(qū)間及最大值;
(2)當(dāng)x∈[0,+∞)時,不等式f(x)≤x恒成立,求實數(shù)a的取值范圍.
(3)求證:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

參考導(dǎo)數(shù)公式:(ln(x+1))=
1
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲線y=f(x)在點(2,f(2))處與直線y=8相切,求a,b的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a=則二項式的常數(shù)項是       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若一組數(shù)據(jù)的中位數(shù)為,則直線與曲線圍成圖形的面積為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=x2和y2=x所圍成的平面圖形繞x軸旋轉(zhuǎn)一周后,所形成的旋轉(zhuǎn)體的體積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

由曲線,直線所圍圖形面積S=       .

查看答案和解析>>

同步練習(xí)冊答案