已知函數,曲線在點處的切線為,若時,有極值.
(1)求的值;
(2)求在上的最大值和最小值.
(1),(2)最大值為13,最小值為
解析試題分析:解:(1)由得,
科目:高中數學
來源:
題型:解答題
某水域一艘裝載濃硫酸的貨船發(fā)生側翻,導致濃硫酸泄漏,對河水造成了污染.為減少對環(huán)境的影響,環(huán)保部門迅速反應,及時向污染河道投入固體堿,個單位的固體堿在水中逐漸溶化,水中的堿濃度與時間(小時)的關系可近似地表示為:,只有當污染河道水中堿的濃度不低于時,才能對污染產生有效的抑制作用.
科目:高中數學
來源:
題型:解答題
據行業(yè)協(xié)會預測:某公司以每噸10萬元的價格銷售某種化工產品,可售出該產品1000 噸,若將該產品每噸的價格上漲%,則銷售量將減少%,且該化工產品每噸的價格上漲幅度不超過%,其中為正常數
科目:高中數學
來源:
題型:解答題
已知函數f(x)=|x+1|,g(x)=2|x|+a.
科目:高中數學
來源:
題型:解答題
如圖,一矩形鐵皮的長為8cm,寬為5cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大,并求出此最大值?
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
當時,切線的斜率為3,可得 ①
當時,有極值,得
可得 ②
由①②解得
由于切點的橫坐標為∴
∴
∴
(2)由(1)可得
∴
令,得,
當變化時,的取值及變化如下表:
真確列出表得 1 +
(Ⅰ) 如果只投放1個單位的固體堿,則能夠維持有效的抑制作用的時間有多長?
(Ⅱ) 第一次投放1單位固體堿后,當污染河道水中的堿濃度減少到時,馬上再投放1個單位的固體堿,設第二次投放后水中堿濃度為,求的函數式及水中堿濃度的最大值.(此時水中堿濃度為兩次投放的濃度的累加)
(1)當時,該產品每噸的價格上漲百分之幾,可使銷售的總金額最大?
(2)如果漲價能使銷售總金額比原銷售總金額多,求的取值范圍.
(1)當a=0時,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求實數a的取值范圍.
版權聲明:本站所有文章,圖片來源于網絡,著作權及版權歸原作者所有,轉載無意侵犯版權,如有侵權,請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網安備42018502000812號