【題目】已知數(shù)列{an}中,a1=1a2=a,且an+1=kan+an+2)對任意正整數(shù)n都成立,數(shù)列{an}的前n項和為Sn

1)若,且S2019=2019,求a;

2)是否存在實數(shù)k,使數(shù)列{an}是公比不為1的等比數(shù)列,且任意相鄰三項amam+1,am+2按某順序排列后成等差數(shù)列,若存在,求出所有k的值;若不存在,請說明理由;

3)若,求Sn

【答案】(1) a=1;(2)存在滿足要求的實數(shù)k有且僅有一個;(3) Sn=

【解析】

1)由題意求得首項為1,公差d=a-1,結(jié)合等差數(shù)列前n項和公式列方程可得a

2)假設(shè)存在滿足題意的實數(shù)k,分類討論可得k

3k=,an+1=an+an+2),an+2+an+1=an+1+an),an+3+an+2=an+2+an+1=an+1+an,結(jié)合題意分類討論,然后分組求和可得Sn

解:(1k=,an+1=an+an+2),

∴數(shù)列{an}為等差數(shù)列,

a1=1a2=a,∴公差d=a-1,

S2019=2019=2019+×a-1),解得a=1;

2)設(shè)數(shù)列{an}是公比不為1的等比數(shù)列,則它的公比q==a,

am=am-1,am+1=am,am+2=am+1,任意相鄰三項

am,am+1am+2按某順序排列后成等差數(shù)列,

an+1為等差中項,則2am+1=am+am+2

am-1+am+1=2am,解得a=1,不合題意;

am為等差中項,則2am=am+1+am+2,

2am-1=am+1+am,化簡a2+a-2=0,解得a=-2a=1(舍去);

③若am+2為等差中項,則2am+2=am+1+am,

2am+1=am+am-1,化簡得:2a2-a-1=0,解得a=;

k====

綜上可得,滿足要求的實數(shù)k有且僅有一個;

3k=,則an+1=an+an+2),

an+2+an+1=an+1+an),an+3+an+2=an+2+an+1=an+1+an,

當(dāng)n是偶數(shù)時,Sn=a1+a2+…+an=a1+a2+…+an-1+an

=a1+a2=a+1).

當(dāng)n是奇數(shù)時,Sn=a1+a2+a3+…+an-1+an

=1+a2+a3=1+[-a1+a2]=1a+1)(n≥1),

n=1也適合上式,

綜上可得,Sn=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列.在歐洲,這個表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年發(fā)現(xiàn)這一規(guī)律的.我國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,這是我國數(shù)學(xué)史上的一個偉大成就.如圖所示,在楊輝三角中,去除所有為1的項,依次構(gòu)成數(shù)列,則此數(shù)列前135項的和為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,過點(diǎn)向圓引兩條切線,切點(diǎn)為,若點(diǎn)的坐標(biāo)為,則直線的方程為____________;若為直線上一動點(diǎn),則直線經(jīng)過定點(diǎn)__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強(qiáng)烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:

根據(jù)這9年的數(shù)據(jù),對作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;

根據(jù)后5年的數(shù)據(jù),對作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.

(1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,

方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測,方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測.

從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?

附:相關(guān)性檢驗的臨界值表:

(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機(jī)調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù) 的單調(diào)性;

(2)若曲線上存在唯一的點(diǎn),使得曲線在該點(diǎn)處的切線與曲線只有一個公共點(diǎn),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面命題正確的是(

A.”是“”的 充 分不 必 要條件

B.命題“若,則”的 否 定 是“ 存 在,則”.

C.設(shè),則“”是“”的必要而不充分條件

D.設(shè),則“”是“”的必要 不 充 分 條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足.

(1)求的通項公式;

(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,過的直線軸交于點(diǎn),與軸交于點(diǎn),記與坐標(biāo)軸圍成的三角形的面積為.

1)若,且,求直線的方程;

2)若、都在正半軸上,求的最小值;

3)寫出面積的取值范圍與直線條數(shù)的對應(yīng)關(guān)系.(不需要證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為4,焦距為

求橢圓的方程;

過動點(diǎn)的直線交軸與點(diǎn),交于點(diǎn) (在第一象限),且是線段的中點(diǎn).過點(diǎn)軸的垂線交于另一點(diǎn),延長于點(diǎn).

設(shè)直線的斜率分別為,證明為定值;

求直線的斜率的最小值.

查看答案和解析>>

同步練習(xí)冊答案