分析 (1)(2)利用基本不等式與指數(shù)函數(shù)運(yùn)算冪的性質(zhì)即可求得答案.
解答 解:(1)∵x>y>0,且xy=1,
∴$\frac{{x}^{2}+{y}^{2}}{x-y}$=$\frac{{(x-y)}^{2}+2xy}{x-y}$=(x-y)+$\frac{2xy}{x-y}$=(x-y)+$\frac{2}{x-y}$≥2$\sqrt{2}$,
當(dāng)且僅當(dāng)x-y=$\frac{2}{x-y}$時(shí)“=”成立,
此時(shí)$\left\{\begin{array}{l}{x-y=\frac{2}{x-2}}\\{xy=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\sqrt{2+\sqrt{3}}}\\{y=\sqrt{2-\sqrt{3}}}\end{array}\right.$;
(2)解:∵2a>0,2b>0,a+b=5,
∴2a+2b≥2$\sqrt{{2}^{a}{•2}^}$=2$\sqrt{{2}^{a+b}}$=2$\sqrt{{2}^{5}}$=8$\sqrt{2}$(當(dāng)且僅當(dāng)a=b=$\frac{5}{2}$時(shí)取“=”).
即2a+2b的最小值是8$\sqrt{2}$.
點(diǎn)評(píng) 本題考查基本不等式,考查指數(shù)函數(shù)運(yùn)算冪的性質(zhì),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有1個(gè) | B. | 有2個(gè) | C. | 有無數(shù)個(gè) | D. | 至多有一個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com