【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(其中為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的直角坐標(biāo)方程,并求的焦點(diǎn)的直角坐標(biāo);

(2)已知點(diǎn),若直線相交于兩點(diǎn),且,求的面積.

【答案】(1)的直角坐標(biāo)方程為,其焦點(diǎn)為.(2)

【解析】試題分析:1根據(jù)代入原方程,寫出直角坐標(biāo)方程以及焦點(diǎn)坐標(biāo)即可; 2將直線l的參數(shù)方程代入曲線C中,寫出韋達(dá)定理,再根據(jù)t的幾何意義將等價(jià)轉(zhuǎn)化,代入韋達(dá)定理解出直線的傾斜角的值,進(jìn)而求出三角形的面積.

試題解析:解:(1)原方程變形為,

,

的直角坐標(biāo)方程為,其焦點(diǎn)為.

(2)把的方程代入,

,

平方得,

把①代入②得,

是直線的傾斜角,∴

的普通方程為,且

的面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為 ( )

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點(diǎn)A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線處的切線與平行.

(1)求的值;

(2)當(dāng)時(shí),試探究函數(shù)的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為e1 , 以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為e2 , 則(
A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)

(1)求的方程;

(2)是否存在直線相交于兩點(diǎn),且滿足:①為坐標(biāo)原點(diǎn))的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A、B兩點(diǎn).
(1)當(dāng)l經(jīng)過圓心C時(shí),求直線l的方程; (寫一般式)
(2)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)函數(shù)f(x)=(
(1)求函數(shù)f(x)的值域
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案