17.已知數(shù)列{an}中,a1=1,an=an-1+3(n≥2,n∈N*),數(shù)列{bn}滿足bn=$\frac{1}{a_na_{n+1}}$,n∈N*,則$\underset{lim}{n→∞}$(b1+b2+…+bn)$\frac{1}{3}$.

分析 求出an=3n-2,從而bn=$\frac{1}{a_na_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),由此有求出$\underset{lim}{n→∞}$(b1+b2+…+bn)的值.

解答 解:∵數(shù)列{an}中,a1=1,an=an-1+3(n≥2,n∈N*),
∴數(shù)列{an}是首項a1=1,公差d=an-an-1=3的等差數(shù)列,
∴an=1+(n-1)×3=3n-2,
∴bn=$\frac{1}{a_na_{n+1}}$=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}$-$\frac{1}{3n+1}$),
∴b1+b2+…+bn=$\frac{1}{3}$(1-$\frac{1}{4}$+$\frac{1}{4}-\frac{1}{7}$+…+$\frac{1}{3n-2}-\frac{1}{3n+1}$)
=$\frac{1}{3}$(1-$\frac{1}{3n+1}$)
=$\frac{n}{3n+1}$.
∴$\underset{lim}{n→∞}$(b1+b2+…+bn)=$\underset{lim}{n→∞}\frac{n}{3n+1}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 本題考查數(shù)列的前n項和的極限值的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7..已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)若定點P(1,1)分弦AB為$\frac{AP}{PB}$=$\frac{1}{2}$,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的實軸長度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=a${\;}^{{x}^{2}-2x}$(a>0,且a≠1),x∈[0,$\frac{3}{2}$]的最大值比最小值大2a,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)$\overrightarrow{a}$=(-2,3),|$\overrightarrow{a}$|=$\frac{1}{2}$|$\overrightarrow$|,且$\overrightarrow{a}$、$\overrightarrow$同向,則$\overrightarrow$的坐標為(-4,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對邊分別為a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=2$\sqrt{2}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點A,B,C,D是直角坐標系中不同的四點,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$(λ∈R),$\overrightarrow{AD}$=μ$\overrightarrow{AB}$(μ∈R),且$\frac{1}{λ}$+$\frac{1}{μ}$=2,則下列說法正確的是(  )
A.C可能是線段AB的中點
B.D可能是線段AB的中點
C.C、D可能同時在線段AB上
D.C、D不可能同時在線段AB的延長線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c,d∈E,證明下列不等式:
(1)(a2+b2)(c2+d2)≥(ac+bd)2;    
(2)a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={(x,y)|y=0.2|x|-1},集合B={(x,y)|y=m},若A∩B≠∅,則實數(shù)m的取值范圍是(-1,0].

查看答案和解析>>

同步練習(xí)冊答案