【題目】已知函數(shù).

(1)討論極值點(diǎn)的個(gè)數(shù);

(2)若的一個(gè)極值點(diǎn),且,證明: .

【答案】(1) 當(dāng)時(shí),無(wú)極值點(diǎn);當(dāng)時(shí),個(gè)極值點(diǎn);當(dāng)時(shí),個(gè)極值點(diǎn);(2)證明見解析

【解析】

1)求導(dǎo)得到;分別在、四種情況下根據(jù)的符號(hào)確定的單調(diào)性,根據(jù)極值點(diǎn)定義得到每種情況下極值點(diǎn)的個(gè)數(shù);(2)由(1)的結(jié)論和可求得,從而得到,代入函數(shù)解析式可得;令可將化為關(guān)于的函數(shù),利用導(dǎo)數(shù)可求得的單調(diào)性,從而得到,進(jìn)而得到結(jié)論.

1

①當(dāng)時(shí),

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞減;在上單調(diào)遞增

的唯一極小值點(diǎn),無(wú)極大值點(diǎn),即此時(shí)極值點(diǎn)個(gè)數(shù)為:個(gè)

②當(dāng)時(shí),令,解得:,

⑴當(dāng)時(shí),

時(shí),;時(shí),

,上單調(diào)遞增;在上單調(diào)遞減

的極大值點(diǎn),的極小值點(diǎn),即極值點(diǎn)個(gè)數(shù)為:個(gè)

⑵當(dāng)時(shí),,此時(shí)恒成立且不恒為

上單調(diào)遞增,無(wú)極值點(diǎn),即極值點(diǎn)個(gè)數(shù)為:個(gè)

⑶當(dāng)時(shí),

時(shí),;時(shí),

,上單調(diào)遞增;在上單調(diào)遞減

的極大值點(diǎn),的極小值點(diǎn),即極值點(diǎn)個(gè)數(shù)為:個(gè)

綜上所述:當(dāng)時(shí),無(wú)極值點(diǎn);當(dāng)時(shí),個(gè)極值點(diǎn);當(dāng)時(shí),個(gè)極值點(diǎn)

(2)由(1)知,若的一個(gè)極值點(diǎn),則

,即

,則 ,

當(dāng)時(shí),,

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增;在上單調(diào)遞減

,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果數(shù)列對(duì)于任意,都有,其中為常數(shù),則稱數(shù)列是“間等差數(shù)列”,為“間公差”.若數(shù)列滿足,,.

(1)求證:數(shù)列是“間等差數(shù)列”,并求間公差

(2)設(shè)為數(shù)列的前n項(xiàng)和,若的最小值為-153,求實(shí)數(shù)的取值范圍;

(3)類似地:非零數(shù)列對(duì)于任意,都有,其中為常數(shù),則稱數(shù)列是“間等比數(shù)列”,為“間公比”.已知數(shù)列中,滿足,,試問數(shù)列是否為“間等比數(shù)列”,若是,求最大的整數(shù)使得對(duì)于任意,都有;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè)是函數(shù)的導(dǎo)函數(shù),若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)求的單調(diào)區(qū)間;

(II)討論上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)營(yíng)銷人員進(jìn)行某商品M市場(chǎng)營(yíng)銷調(diào)查發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計(jì)得到以下表:

反饋點(diǎn)數(shù)

1

2

3

4

5

銷量(百件)/

0. 5

0. 6

1

1. 4

1. 7

1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(百件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系. 請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天銷量;

2)若節(jié)日期間營(yíng)銷部對(duì)商品進(jìn)行新一輪調(diào)整. 已知某地?cái)M購(gòu)買該商品的消費(fèi)群體十分龐大,經(jīng)營(yíng)銷調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點(diǎn)數(shù)預(yù)期值區(qū)間(百分比)

頻數(shù)

20

60

60

30

20

10

(。┣筮@200位擬購(gòu)買該商品的消費(fèi)者對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值的樣本平均數(shù)及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到0. 1);

(ⅱ)將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在的消費(fèi)者分別定義為欲望緊縮型消費(fèi)者和欲望膨脹型消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取2名進(jìn)行跟蹤調(diào)查,設(shè)抽出的2人中,至少有一個(gè)人是欲望膨脹型消費(fèi)者的概率是多少?

參考公式及數(shù)據(jù):①,;②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校從參加高一年級(jí)期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了她們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為150分),得到的樣本頻率分布表如下:

分組

頻數(shù)

頻率

2

0.04

3

0.06

14

0.28

15

0.30

4

0.08

合計(jì)

(1)在給出的樣本頻率分布表中,求,,,的值;

(2)估計(jì)成績(jī)?cè)?20分以上(含120分)學(xué)生的比例;

(3)抽取的50名學(xué)生中,為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)?cè)?/span>的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)?/span>中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?35分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是二次函數(shù),且f0=0fx+1=fx+x+1,

1)求fx)的表達(dá)式;

2)若fx)>ax∈[﹣1,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè),求函數(shù)的單調(diào)增區(qū)間;

2)設(shè),求證:存在唯一的,使得函數(shù)的圖象在點(diǎn)處的切線l與函數(shù)的圖象也相切;

3)求證:對(duì)任意給定的正數(shù)a,總存在正數(shù)x,使得不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案