【題目】學校從參加高一年級期中考試的學生中抽出50名學生,并統(tǒng)計了她們的數(shù)學成績(成績均為整數(shù)且滿分為150分),得到的樣本頻率分布表如下:

分組

頻數(shù)

頻率

2

0.04

3

0.06

14

0.28

15

0.30

4

0.08

合計

(1)在給出的樣本頻率分布表中,求,,的值;

(2)估計成績在120分以上(含120分)學生的比例;

(3)抽取的50名學生中,為了幫助成績差的學生提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績在的學生中選兩位同學,共同幫助成績在中的某一位同學.已知甲同學的成績?yōu)?2分,乙同學的成績?yōu)?35分,求甲、乙兩同學恰好被安排在同一小組的概率.

【答案】(1);

(2);

(3)

【解析】

1)由樣本的頻率分布表中的數(shù)據(jù),即可求解的值;

2)由頻率分布表中的數(shù)據(jù),即可估計成績在120分以上的學生比例;

(3)成績在內(nèi)有2人,記為甲,,成績在內(nèi)的4人,記為乙,,,利用列舉法求得基本事件的總數(shù),根據(jù)古典概型及其概率的計算公式,即可求解.

(1)由題意,根據(jù)樣本頻率分布表,

可得.

(2)估計成績在120分以上(含120分)的學生比例為:.

(3)成績在內(nèi)有2人,記為甲、,

成績在內(nèi)有4人,記為乙,,.

則“二幫一”小組有以下12種分法:甲乙,甲乙,甲乙,甲,甲,甲

,,,,,

其中甲、乙兩同學被分在同一小組有3中分法:甲乙,甲乙,甲乙,

所以甲、乙同學恰好被安排在同一小組的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《上海市生活垃圾管理條例》于201971日正式實施,某小區(qū)全面實施垃圾分類處理,已知該小區(qū)每月垃圾分類處理量不超過300噸,每月垃圾分類處理成本(元)與每月分類處理量(噸)之間的函數(shù)關系式可近似表示為,而分類處理一噸垃圾小區(qū)也可以獲得300元的收益.

1)該小區(qū)每月分類處理多少噸垃圾,才能使得每噸垃圾分類處理的平均成本最低;

2)要保證該小區(qū)每月的垃圾分類處理不虧損,每月的垃圾分類處理量應控制在什么范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120/千克、80/千克、70/千克、40元千克,為增加銷量,張軍對這四種干果進行促銷:一次購買干果的總價達到150元,顧客就少付x(2xZ).每筆訂單顧客網(wǎng)上支付成功后,張軍會得到支付款的80%.

①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;

②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,為等邊三角形,,的中點.

(1)證明:平面平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論極值點的個數(shù);

(2)若的一個極值點,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略的不斷深入實施,高新技術企業(yè)在科技創(chuàng)新和經(jīng)濟發(fā)展中的帶動作用日益凸顯,某能源科學技術開發(fā)中心擬投資開發(fā)某新型能源產(chǎn)品,估計能獲得萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵議案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,獎金不超過萬元,同時獎金不超過投資收益的.(即:設獎勵方案函數(shù)模擬為時,則公司對函數(shù)模型的基本要求是:當時,①是增函數(shù);②恒成立;③恒成立.

1)現(xiàn)有兩個獎勵函數(shù)模型:(I;(II.試分析這兩個函數(shù)模型是否符合公司要求?

2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)fx)是奇函數(shù),且滿足f3-x=fx),f-1=3,數(shù)列{an}滿足a1=1an=nan+1-an)(nN*),則fa36+fa37=(  )

A. B. C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的一個側面為等邊三角形,且平面平面,四邊形是平行四邊形,,,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,點在橢圓上.

)求橢圓的標準方程.

)是否存在斜率為的直線,使得當直線與橢圓有兩個不同交點,時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案