設(shè)函數(shù)
(1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;
(2)若存在,使成立,求實(shí)數(shù)的取值范圍.

(1)a的最小值為;(2)

解析試題分析:(1)根據(jù)f (x)在上為減函數(shù),得到上恒成立.轉(zhuǎn)化成時(shí),
應(yīng)用導(dǎo)數(shù)確定其最大值為
(2)應(yīng)用“轉(zhuǎn)化與化歸思想”,對(duì)命題進(jìn)行一系列的轉(zhuǎn)化,“若存在使成立”等價(jià)于“當(dāng)時(shí),有”.
由(1)問(wèn)題等價(jià)于:“當(dāng)時(shí),有”.
討論①當(dāng)時(shí),②當(dāng)<時(shí), ,作出結(jié)論.
(1)由已知得x>0,x≠1.
因f (x)在上為減函數(shù),故上恒成立.      1分
所以當(dāng)時(shí),
,            2分
故當(dāng),即時(shí),
所以于是,故a的最小值為.                  4分
(2)命題“若存在使成立”等價(jià)于
“當(dāng)時(shí),有”.                   5分
由(1),當(dāng)時(shí),,
問(wèn)題等價(jià)于:“當(dāng)時(shí),有”.                  6分
①當(dāng)時(shí),由(1),上為減函數(shù),
=,故.                  8分
②當(dāng)<時(shí),由于上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/38/2/as05e.png" style="vertical-align:middle;" />
(。,即,恒成立,故上為增函數(shù),
于是,,矛盾.                 10分
(ⅱ),即,由的單調(diào)性和值域知,
存在唯一,使,且滿(mǎn)足:
當(dāng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對(duì)任意的都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)() =,g ()=+。
(1)求函數(shù)h ()=()-g ()的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(2)設(shè)數(shù)列滿(mǎn)足,證明:存在常數(shù)M,使得對(duì)于任意的,都有≤ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

據(jù)環(huán)保部門(mén)測(cè)定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距18的A,B兩家化工廠(chǎng)(污染源)的污染強(qiáng)度分別為,它們連線(xiàn)上任意一點(diǎn)C處的污染指數(shù)等于兩化工廠(chǎng)對(duì)該處的污染指數(shù)之和.設(shè)).
(1)試將表示為的函數(shù); (2)若,且時(shí),取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)試問(wèn)函數(shù)能否在處取得極值,請(qǐng)說(shuō)明理由;
(2)若,當(dāng)時(shí),函數(shù)的圖像有兩個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直,求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè),當(dāng)時(shí),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù) 若對(duì)任意大于等于2的實(shí)數(shù)x1,總存在唯一的小于2的實(shí)數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)如圖所示的不規(guī)則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點(diǎn)至兩端點(diǎn)所在直線(xiàn)的距離)的拋物線(xiàn)形的一部分,現(xiàn)要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)R).
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求的值;
(2)在(1)條件下,求函數(shù)的單調(diào)區(qū)間和極值;
(3)當(dāng),且時(shí),證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案