設(shè)函數(shù)
(1)試問函數(shù)能否在處取得極值,請說明理由;
(2)若,當(dāng)時,函數(shù)的圖像有兩個公共點,求的取值范圍.
(1)函數(shù)不能在處取得極值,理由詳見試題解析;
(2)的取值范圍是.
解析試題分析:(1)先對函數(shù)求導(dǎo),因為函數(shù)在實數(shù)上單調(diào)遞增,故函數(shù)不可再
處取得極值.
(2)函數(shù)與的圖像在有兩個公共點,即方程在有兩解,結(jié)合函數(shù)的單調(diào)性可求的取值范圍.
(1),當(dāng)時,,
而此時,函數(shù)在實數(shù)上單調(diào)遞增,故函數(shù)不可再
處取得極值.
(2)當(dāng)時,,函數(shù)與的圖像在有兩個公共點,即方程在有兩解,
方程可轉(zhuǎn)化為,設(shè),
則,令,
解得,所以函數(shù)在遞增,在上遞減.
,所以要使得方程有兩解需
.
考點:導(dǎo)函數(shù)的綜合應(yīng)用、構(gòu)造思想、轉(zhuǎn)化與化歸思想.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)a=l時,求的單調(diào)區(qū)間;
(2)若函數(shù)在上是減函數(shù),求實數(shù)a的取值范圍;
(3)令,是否存在實數(shù)a,當(dāng)(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x3-ax+1.
(1)求x=1時,f(x)取得極值,求a的值;
(2)求f(x)在[0,1]上的最小值;
(3)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并說明理由;
(2)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若函數(shù)在上為減函數(shù),求實數(shù)的最小值;
(2)若存在,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng) 時,求在處的切線方程;
(2)設(shè)函數(shù),
(。┤艉瘮(shù)有且僅有一個零點時,求的值;
(ⅱ)在(ⅰ)的條件下,若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計當(dāng)每件產(chǎn)品的售價為元()時,一年的銷售量為萬件。
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價為多少時,公司的一年的利潤y最大,求出y最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),函數(shù)
⑴當(dāng)時,求函數(shù)的表達式;
⑵若,函數(shù)在上的最小值是2 ,求的值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com