已知橢圓)的兩個焦點分別為,點P在橢圓上,且滿足,,直線與圓相切,與橢圓相交于A,B兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)證明為定值(O為坐標原點)

 

【答案】

 

(Ⅰ)

(Ⅱ)證明略

【解析】

(Ⅱ)設交點,聯(lián)立

消去可得

由韋達定理得             -------------------------9分

又直線與圓相切,與橢圓相交于A,B兩點,

從而有,即 -------------------------11分

從而

++

,             --------------------------------14分

所以,即,即為定值。------------15分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年貴州省高三第一次月考文科數(shù)學 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。

 

查看答案和解析>>

同步練習冊答案