精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與軸垂直的
直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足
PA
AB
=m-4,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.
分析:(Ⅰ)利用橢圓的定義和簡(jiǎn)單性質(zhì),求出a 和b2的值,即得橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)點(diǎn)P的坐標(biāo)為(x,y),由
PA
AB
=m-4,求得 y=2x+m,求出點(diǎn)B關(guān)于P的軌跡的對(duì)稱點(diǎn)B′的坐標(biāo),并代入橢圓方程,解出 m值,即得點(diǎn)P的軌跡方程.
解答:解:(Ⅰ)由題意可得|MF2|=
1
2
,由橢圓的定義得:|MF1|+
1
2
=2a.
∵|MF1|2=4c2+
1
4
,∴(2a-
1
2
)
2
=4c2+
1
4
,又 e=
3
2
c2=
3
4
a2
,
∴4a2-2a=3a2,∴a=2.
∴b2=a2-c2=
a2
4
=1,∴所求橢圓C的方程為 
x2
4
+y2=1

(Ⅱ)由(Ⅰ)知點(diǎn)A(-2,0),點(diǎn)B為(0,-1),設(shè)點(diǎn)P的坐標(biāo)為(x,y),
PA
=(-2-x,-y),
AB
=(2,-1),由
PA
AB
=m-4 得-4-2x+y=m-4,
∴點(diǎn)P的軌跡方程為 y=2x+m.
設(shè)點(diǎn)B關(guān)于P的軌跡的對(duì)稱點(diǎn)為B′(x0,y0),則由軸對(duì)稱的性質(zhì)可得:
y0+1
x0
=-
1
2
,
y0-1
2
=2•
x0
2
+m
,
解得:x0=
-4-4m
5
,y0=
2m-3
5
,∵B′(x0,y0) 在橢圓上,
(
-4-4m
5
)
2
+4(
2m-3
5
)
2
=4,整理得 2m2-m-3=0解得 m=-1或 m=
3
2

∴點(diǎn)P的軌跡方程為 y=2x-1或 y=2x+
3
2
,經(jīng)檢驗(yàn)  y=2x-1和 y=2x+
3
2
,都符合題設(shè),
∴滿足條件的點(diǎn)P的軌跡方程為 y=2x-1,或 y=2x+
3
2
點(diǎn)評(píng):本題考查橢圓的定義、標(biāo)準(zhǔn)方程和簡(jiǎn)單性質(zhì),求點(diǎn)的軌跡方程的方法,利用橢圓的對(duì)稱性求出m值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•杭州二模)如圖,在直角坐標(biāo)系xOy中,銳角△ABC內(nèi)接于圓x2+y2=1.已知BC平行于x軸,AB所在直線方程為y=kx+m(k>0),記角A,B,C所對(duì)的邊分別是a,b,c.
(1)若3k=
2ac
a2+c2-b2
,求cos2
A+C
2
+sin2B
的值;
(2)若k=2,記∠xOA=α(0<α<
π
2
),∠xOB=β(π<β<
2
),求sin(α+β)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,中心在原點(diǎn),焦點(diǎn)在X軸上的橢圓G的離心率為e=
15
4
,左頂點(diǎn)A(-4,0),圓O':(x-2)2+y2=r2是橢圓G的內(nèi)接△ABC的內(nèi)切圓.
(Ⅰ) 求橢圓G的方程;
(Ⅱ)求圓O'的半徑r;
(Ⅲ)過M(0,1)作圓G的兩條切線交橢圓于E,F(xiàn)兩點(diǎn),判斷直線EF與圓O'的位置關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)二模)如圖,在直角坐標(biāo)系xOy中,角α的頂點(diǎn)是原點(diǎn),始邊與x軸正半軸重合,終邊交單位圓于點(diǎn)A,且α∈(
π
6
π
2
)
.將角α的終邊按逆時(shí)針方向旋轉(zhuǎn)
π
3
,交單位圓于點(diǎn)B.記A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
3
,求x2
(Ⅱ)分別過A,B作x軸的垂線,垂足依次為C,D.記△AOC的面積為S1,△BOD的面積為S2.若S1=2S2,求角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,角α的頂點(diǎn)是原點(diǎn),始邊與x軸正半軸重合,終邊交單位圓于點(diǎn)A,且α∈(
π
3
π
2
)
.將角α的終邊按逆時(shí)針方向旋轉(zhuǎn)
π
6
,交單位圓于點(diǎn)B.記A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
1
4
,求x2; 
(Ⅱ)分別過A,B作x軸的垂線,垂足依次為C,D.記△AOC的面積為S1,△BOD的面積為S2.若S1=S2,求角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知射線OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),過點(diǎn)P(a,0)(a>0)作直線l分別交射線OA,OB于A,B兩點(diǎn),且
AP
=2
PB
,則直線l的斜率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案