已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為

(Ⅰ)設(shè)直線(xiàn)過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線(xiàn)垂直于點(diǎn)P,線(xiàn)段的垂直平分線(xiàn)交于點(diǎn)M,求點(diǎn)M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線(xiàn)上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓的面積最小時(shí)點(diǎn)的坐標(biāo).

(Ⅰ)(Ⅱ).

解析試題分析:(Ⅰ) 利用拋物線(xiàn)的定義“到定點(diǎn)的距離等于到定直線(xiàn)的距離”來(lái)求;(Ⅱ)直線(xiàn)與拋物線(xiàn)相交,聯(lián)立消元,設(shè)點(diǎn)代入化簡(jiǎn),利用基本不等式求最值.
試題解析:(I)在線(xiàn)段的垂直平分線(xiàn)上,∴| MP | =" |" M |
故動(dòng)點(diǎn)M到定直線(xiàn)的距離等于它到定點(diǎn)的距離
因此動(dòng)點(diǎn)M的軌跡是以為準(zhǔn)線(xiàn),為焦點(diǎn)的拋物線(xiàn),
所以點(diǎn)M的軌跡的方程為  
(II)因?yàn)橐設(shè)S為直徑的圓與相交于點(diǎn)R,
所以,即
設(shè),,則
,,
所以,即
,,∴
,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立
當(dāng)時(shí),,圓的直徑,
這時(shí)點(diǎn)S的坐標(biāo)為
考點(diǎn):拋物線(xiàn)的定義,向量的坐標(biāo)運(yùn)算,基本不等式,坐標(biāo)表示等,考查了學(xué)生的綜合化簡(jiǎn)計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的左、右焦點(diǎn)分別是、,下頂點(diǎn)為,線(xiàn)段的中點(diǎn)為為坐標(biāo)原點(diǎn)),如圖.若拋物線(xiàn)軸的交點(diǎn)為,且經(jīng)過(guò)、兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線(xiàn)上的一動(dòng)點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的切線(xiàn)交橢圓、兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

以點(diǎn)F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓C經(jīng)過(guò)點(diǎn)(1,)。
(I)求橢圓C的方程;
(II)過(guò)P點(diǎn)分別以為斜率的直線(xiàn)分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知圓,圓,動(dòng)圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線(xiàn)
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線(xiàn),與曲線(xiàn)交于兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)是,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過(guò)點(diǎn)與圓相切的直線(xiàn)的另一交點(diǎn)為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)和上下兩個(gè)頂點(diǎn)是一個(gè)邊長(zhǎng)為2且∠F1B1F2的菱形的四個(gè)頂點(diǎn).
(1)求橢圓的方程;
(2)過(guò)右焦點(diǎn)F2 ,斜率為)的直線(xiàn)與橢圓相交于兩點(diǎn),A為橢圓的右頂點(diǎn),直線(xiàn)、分別交直線(xiàn)于點(diǎn)、,線(xiàn)段的中點(diǎn)為,記直線(xiàn)的斜率為.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為,直線(xiàn)交于兩點(diǎn).
(1)寫(xiě)出的方程;
(2)若點(diǎn)在第一象限,證明當(dāng)時(shí),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離之和為.
(Ⅰ)求動(dòng)點(diǎn)軌跡的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)作直線(xiàn),交橢圓異于兩點(diǎn),直線(xiàn)的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓相交于兩點(diǎn),是否存在定直線(xiàn),使得的交點(diǎn)總在直線(xiàn)上?若存在,求出一個(gè)滿(mǎn)足條件的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案