【題目】2017年5月,來自“一帶一路”沿線的20國青年評選出了中國的“新四大發(fā)明”:高鐵、掃碼支付、共享單車和網(wǎng)購.乘坐高鐵可以網(wǎng)絡(luò)購票,為了研究網(wǎng)絡(luò)購票人群的年齡分布情況,在5月31日重慶到成都高鐵9600名網(wǎng)絡(luò)購票的乘客中隨機(jī)抽取了120人進(jìn)行了統(tǒng)計并記錄,按年齡段將數(shù)據(jù)分成6組:,得到如圖所示的直方圖:
(1)若從總體的9600名網(wǎng)絡(luò)購票乘客中隨機(jī)抽取一人,估計其年齡大于35歲的概率;
(2)試估計總體中年齡在區(qū)間內(nèi)的人數(shù);
(3)試通過直方圖,估計5月31日當(dāng)天網(wǎng)絡(luò)購票的9600名乘客年齡的中位數(shù).
【答案】(1)0.4;(2)480人;(3)32.5.
【解析】
(1)由頻率分布直方圖,求出年齡大于35的頻率:,即可求解.
(2)求出區(qū)間的概率,進(jìn)而利用總?cè)藬?shù)以及在此區(qū)間內(nèi)的概率即可求解.
(3)由直方圖可知,設(shè)中位數(shù)為x,由題可得,求解即可.
(1)由頻率分布直方圖知:年齡大于35的頻率為:
故從總體的9600名網(wǎng)購票乘客中隨機(jī)抽取一人,估計其年齡大于35歲的概率為0.4;
(2)設(shè)在區(qū)間內(nèi)的概率為,則
解得,估計總體中年齡在區(qū)間內(nèi)的人數(shù)為人.
(3)由直方圖可知:中位數(shù)在區(qū)間內(nèi),設(shè)中位數(shù)為x.
由題可得:,所以5月31日當(dāng)天網(wǎng)絡(luò)購票的9600名乘客年齡的中位數(shù)大約為32.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中,四邊形為菱形,且,為的中點(diǎn).
(1)求證:平面;
(2)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,對于點(diǎn),定義變換:將點(diǎn)變換為點(diǎn),使得其中.這樣變換就將坐標(biāo)系內(nèi)的曲線變換為坐標(biāo)系內(nèi)的曲線.則四個函數(shù),,,在坐標(biāo)系內(nèi)的圖象,變換為坐標(biāo)系內(nèi)的四條曲線(如圖)依次是
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右頂點(diǎn)分別為,,為坐標(biāo)原點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為直線在第一象限內(nèi)的一點(diǎn),連接交橢圓于點(diǎn),連接并延長交橢圓于點(diǎn).若直線的斜率為1,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:上的點(diǎn)到焦點(diǎn)的距離最小值為1.
(1)求的值;
(2)若點(diǎn)在曲線:上,且在曲線上存在三點(diǎn),,,使得四邊形為平行四邊形.求平行四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查生活規(guī)律與患胃病是否與有關(guān),某同學(xué)在當(dāng)?shù)仉S機(jī)調(diào)查了200名30歲以上的人,并根據(jù)調(diào)查結(jié)果制成了不完整的列聯(lián)表如下:
不患胃病 | 患胃病 | 總計 | |
生活有規(guī)律 | 60 | 40 | |
生活無規(guī)律 | 60 | 100 | |
總計 | 100 |
(1)補(bǔ)全列聯(lián)表中的數(shù)據(jù);
(2)用獨(dú)性檢驗的基本原理,說明生活無規(guī)律與患胃病有關(guān)時,出錯的概率不會超過多少?
參考公式和數(shù)表如下:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
/p> | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng) 時,函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿足條件.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com