【題目】如圖所示的多面體中,四邊形為菱形,且,為的中點(diǎn).
(1)求證:平面;
(2)若平面平面,求直線(xiàn)與平面所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)連結(jié)BD,交AC于M,連結(jié)FM,MG,證明即可解決問(wèn)題。
(2)建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量及,利用空間向量夾角公式即可求得直線(xiàn)EC與平面ACF所成角的正弦值,問(wèn)題得解
證明:(1)連結(jié)BD,交AC于M,連結(jié)FM,MG,
因?yàn)锽C=AD=2EF,EF∥BC,BC∥AD,所以,
在△ACD中,M,G分別為AC,CD的中點(diǎn),所以,
所以,所以四邊形EFMG是平行四邊形,
所以EG∥FM,
又因?yàn)镕M平面ACF,EC平面ACF,所以EG∥平面ACF.
(2)取AB的中點(diǎn)O,連結(jié)FO,OC,
因?yàn)锳F=BF=BC,∠ABC=60°,四邊形ABCD為菱形,所以FO⊥AB,OC⊥AB,
因?yàn)槠矫鍭BF⊥平面ABCD,所以FO⊥平面ABCD,
故以O(shè)為原點(diǎn),,,分別為x軸,y軸,z軸正方向建立空間直角坐標(biāo)系,設(shè)AF=BF=BC=2EF=2.
則A(-1,0,0),C(0,,0),F(xiàn)(0,0,),E(,,),=(1,,0),
,,
設(shè)=是平面ACF的一個(gè)法向量,
則,,
令y=z=1,則,故=(,1,1),
設(shè)直線(xiàn)EC與平面ACF所成角為,
則,
所以直線(xiàn)EC與平面ACF所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)的橢圓的離心率為,橢圓與軸交于兩點(diǎn)、,過(guò)點(diǎn)的直線(xiàn)與橢圓交于另一點(diǎn),并與軸交于點(diǎn),直線(xiàn)與直線(xiàn)交于點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)異于點(diǎn)時(shí),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列三個(gè)正方體中,均為所在棱的中點(diǎn),過(guò)作正方體的截面.在各正方體中,直線(xiàn)與平面的位置關(guān)系描述正確的是
A. 平面的有且只有①;平面的有且只有②③
B. 平面的有且只有②;平面的有且只有①
C. .平面的有且只有①;平面的有且只有②
D. 平面的有且只有②;平面的有且只有③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格紙上的小正方形的邊長(zhǎng)為1,粗實(shí)線(xiàn)畫(huà)出的是某幾何體的三視圖,則該幾何體的外接球的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),線(xiàn)段的垂直平分線(xiàn)與直線(xiàn)交于點(diǎn),當(dāng)為拋物線(xiàn)上位于線(xiàn)段下方(含)的動(dòng)點(diǎn)時(shí),則面積的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,直線(xiàn):交拋物線(xiàn)于兩點(diǎn),.
(1)若的中點(diǎn)為,直線(xiàn)的斜率為,證明:為定值;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.
(1)求實(shí)數(shù)a的值;
(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.
(1)求證:EF∥平面PAB;
(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月,來(lái)自“一帶一路”沿線(xiàn)的20國(guó)青年評(píng)選出了中國(guó)的“新四大發(fā)明”:高鐵、掃碼支付、共享單車(chē)和網(wǎng)購(gòu).乘坐高鐵可以網(wǎng)絡(luò)購(gòu)票,為了研究網(wǎng)絡(luò)購(gòu)票人群的年齡分布情況,在5月31日重慶到成都高鐵9600名網(wǎng)絡(luò)購(gòu)票的乘客中隨機(jī)抽取了120人進(jìn)行了統(tǒng)計(jì)并記錄,按年齡段將數(shù)據(jù)分成6組:,得到如圖所示的直方圖:
(1)若從總體的9600名網(wǎng)絡(luò)購(gòu)票乘客中隨機(jī)抽取一人,估計(jì)其年齡大于35歲的概率;
(2)試估計(jì)總體中年齡在區(qū)間內(nèi)的人數(shù);
(3)試通過(guò)直方圖,估計(jì)5月31日當(dāng)天網(wǎng)絡(luò)購(gòu)票的9600名乘客年齡的中位數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com