【題目】
(1)討論函數(shù) 的單調(diào)性,并證明當(dāng) >0時(shí),
(2)證明:當(dāng) 時(shí),函數(shù) 有最小值.設(shè)g(x)的最小值為 ,求函數(shù) 的值域.
【答案】
(1)
證明:
∵當(dāng) 時(shí),
∴ 在 上單調(diào)遞增
∴ 時(shí),
∴
(2)
解:
由(1)知,當(dāng) 時(shí), 的值域?yàn)? ,只有一解.
使得 ,
當(dāng) 時(shí) , 單調(diào)減;當(dāng) 時(shí) , 單調(diào)增
記 ,在 時(shí), ,∴ 單調(diào)遞增
∴
【解析】從導(dǎo)數(shù)作為切入點(diǎn)探求函數(shù)的單調(diào)性,通過(guò)函數(shù)單調(diào)性來(lái)求得函數(shù)的值域,利用復(fù)合函數(shù)的求導(dǎo)公式進(jìn)行求導(dǎo),然后逐步分析即可.
【考點(diǎn)精析】掌握簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道復(fù)合函數(shù)求導(dǎo):和,稱(chēng)則可以表示成為的函數(shù),即為一個(gè)復(fù)合函數(shù);一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sinωx﹣ cosωx(ω>0),將函數(shù)y=|f(x)|的圖象向左平移 個(gè)單位長(zhǎng)度后關(guān)于y軸對(duì)稱(chēng),則當(dāng)ω取最小值時(shí),g(x)=cos(ωx+ )的單調(diào)遞減區(qū)間為( )
A.[﹣ + , + ](k∈Z)
B.[﹣ + , + ](k∈Z)
C.[﹣ + , + ](k∈Z)
D.[﹣ + , + ](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖. 圖中A點(diǎn)表示十月的平均最高氣溫約為,B點(diǎn)表示四月的平均最低氣溫約為. 下面敘述不正確的是 ( )
A. 各月的平均最低氣溫都在以上
B. 七月的平均溫差比一月的平均溫差大
C. 三月和十一月的平均最高氣溫基本相同
D. 平均最高氣溫高于的月份有5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品,已知生產(chǎn)甲產(chǎn)品1桶需耗原料2千克, 原料3千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克,每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元,公司在要求每天消耗原料都不超過(guò)12千克的條件下,生產(chǎn)產(chǎn)品、產(chǎn)品的利潤(rùn)之和的最大值為( )
A. 1800元 B. 2100元 C. 2400元 D. 2700元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是數(shù)列的前n項(xiàng)和,并且,對(duì)任意正整數(shù)n, ;設(shè)
.
(Ⅰ) 證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(Ⅱ) 設(shè),求證: 數(shù)列不可能為等比數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有偶數(shù)個(gè)球,其中紅球、黑球各占一半.甲、乙、丙是三個(gè)空盒.每次從袋中任意取出兩個(gè)球,將其中一個(gè)球放入甲盒,如果這個(gè)球是紅球,就將另一個(gè)球放入乙盒,否則就放入丙盒.重復(fù)上述過(guò)程,直到袋中所有球都被放入盒中,則( )
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中紅球與丙盒中黑球一樣多
C.乙盒中紅球不多于丙盒中紅球
D.乙盒中黑球與丙盒中紅球一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列兩圓的位置關(guān)系.
(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;___________
(2)C1:x2+y2-2y=0,C2:x2+y2-2x-6=0;___________
(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;___________
(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.___________
(5)x2+y2=9和x2+y2-8x+6y+9=0 ________________
(6)圓C1:x2+y2-2x-6y-6=0與圓C2:x2+y2-4x+2y+4=0______
(7)圓x2+y2+6x-7=0和圓x2+y2+6y-27=0 ____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列A: , ,… (N≥2)。如果對(duì)小于n(2≤n≤N)的每個(gè)正整數(shù)k都有 < ,則稱(chēng)n是數(shù)列A的一個(gè)“G時(shí)刻”。記“G(A)是數(shù)列A 的所有“G時(shí)刻”組成的集合。
(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫(xiě)出G(A)的所有元素;
(2)證明:若數(shù)列A中存在 使得 > ,則G(A) ;
(3)證明:若數(shù)列A滿(mǎn)足 - ≤1(n=2,3, …,N),則GA.的元素個(gè)數(shù)不小于 - 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長(zhǎng)方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費(fèi)用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費(fèi)用500元;②需支付一定的保險(xiǎn)費(fèi)用,且支付的保險(xiǎn)費(fèi)用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時(shí),支付的保險(xiǎn)費(fèi)用為4000元.
(Ⅰ)求該博物館支付總費(fèi)用與保護(hù)罩容積之間的函數(shù)關(guān)系式;
(Ⅱ)求該博物館支付總費(fèi)用的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com