過(guò)點(diǎn)M(2,4)向圓C:(x-1)2+(y+3)2=1引兩條切線,切點(diǎn)分別為P,Q.
(1)直線PQ的方程;
(2)切點(diǎn)弦PQ的長(zhǎng).
考點(diǎn):圓的切線方程
專(zhuān)題:綜合題,直線與圓
分析:(1)確定M、P、Q、C四點(diǎn)共圓.其圓是以CM為直徑的圓,再與已知圓相減,即可求出直線PQ的方程;
(2)求出圓心C到直線PQ的距離,利用勾股定理求切點(diǎn)弦PQ的長(zhǎng).
解答: 解:(1)連結(jié)CP、CQ,則CP⊥PM,CQ⊥QM.
∴M、P、Q、C四點(diǎn)共圓.其圓是以CM為直徑的圓.∵C(1,-3),∴CM的中點(diǎn)為(
3
2
,
1
2
).
∴|CM|=
(2-1)2+(4+3)2
=5
2

∴以CM為直徑的圓的方程為(x-
3
2
2+(y-
1
2
2=
25
2

∴PQ的方程為(x-1)2+(y+3)2-1-[(x-
3
2
2+(y-
1
2
2-
25
2
]=0,即x+7y+19=0;
(2)圓心C到直線PQ的距離為
|1-21+19|
1+49
=
1
50
,
∴切點(diǎn)弦PQ的長(zhǎng)=2
1-
1
50
=
7
2
10
點(diǎn)評(píng):本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)的左、右焦點(diǎn)分別是F1、F2,其中一條漸近線方程為y=x,點(diǎn)P(x0,y0)在雙曲線,求
PF1
PF2
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1的方向向量
s1
=(1.1,1),直線l2的方向向量
s2
=(-2.2,-2),則l1,l2夾角的余弦值為( 。
A、-
1
3
B、
1
3
C、
2
2
3
D、-
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
y-1≥0
x+y-4≤0
x-y≥0
,則
y
x
的最大值為( 。
A、
1
2
B、1
C、2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2sin(2x+
π
4
).
求(1)最小周期.
(2)單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間.
(3)對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心.
(4)判斷奇偶性.
(5)若x∈[0,
π
2
],求函數(shù)的值域,并求出當(dāng)函數(shù)取得最大值時(shí),自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列函數(shù)的奇偶性:
(1)y=cos2x,x∈R;
(2)y=cos(2x-
π
2
);   
(3)y=sin(
2
3
x+π);   
(4)y=cos(x-
π
4
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線方程為y2=-4x,準(zhǔn)線交x軸于點(diǎn)N,過(guò)N的直線交曲線于A、B,又AB的中垂線交x軸于點(diǎn)E,求E橫坐標(biāo)x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:sinx4+cosx4=1-2sin2xcos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α、β∈(0,
π
2
),且滿足1-sin(α+β)=cos(α+β)cos(α-β),sin(α+β)=1,求證:α+β=
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案