一批救災(zāi)物資隨26輛汽車從某市以xkm/h的速度勻速開往400km處的災(zāi)區(qū).為安全起見,每?jī)奢v汽車的前后間距不得小于(
x
20
2km,問這批物資全部到達(dá)災(zāi)區(qū),最少要多少小時(shí)?
考點(diǎn):基本不等式在最值問題中的應(yīng)用
專題:綜合題,不等式的解法及應(yīng)用
分析:由題意可知,t相當(dāng)于:最后一輛車行駛了25個(gè)(
x
20
)2
km+400km所用的時(shí)間,利用基本不等式,即可得出結(jié)論.
解答: 解:設(shè)全部物資到達(dá)災(zāi)區(qū)所需時(shí)間為t小時(shí),
由題意可知,t相當(dāng)于:最后一輛車行駛了25個(gè)(
x
20
)2
km+400km所用的時(shí)間,
因此,t=
25×(
x
20
)2
x
+
400
x
≥2
25x
400
×
400
x
=10.
當(dāng)且僅當(dāng)
25x
400
=
400
x
,即x=80時(shí)取“=”.
故這些汽車以80 km/h的速度勻速行駛時(shí),所需時(shí)間最少要10小時(shí).
點(diǎn)評(píng):本題考查基本不等式在最值問題中的應(yīng)用,考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足(1-i)•z=2i,則在復(fù)平面內(nèi),z對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( 。
A、(-1,1)
B、(-1,-1)
C、(1,1)
D、(1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將并排的有不同編號(hào)的5個(gè)房間安排給5個(gè)工作人員臨時(shí)休息,假定每個(gè)人可以選擇任意房間,且選擇各個(gè)房間是等可能的,則恰有兩個(gè)房間無人選擇的安排方式的總數(shù)為( 。
A、900B、1500
C、1800D、1440

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=|2x-2|
(1)作出其圖象;
(2)由圖象指出函數(shù)的單調(diào)區(qū)間;
(3)由圖象指出當(dāng)x取何值時(shí),函數(shù)有最值,并求出最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,甲船以每小時(shí)15
2
海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行40分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西45°方向的B2處,此時(shí)兩船相距10海里,問乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-ax,a為常數(shù).
(1)若函數(shù)f(x)在x=1處的切線與x軸平行,求a的值;
(2)當(dāng)a=1時(shí),試比較f(m)與f(
1
m
)的大小;
(3)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1、x2,試證明x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
sinxsin(x+
π
2
),x∈R.
(1)求該函數(shù)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)的最大值及取得最大值所對(duì)應(yīng)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,該幾何體的表面積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案