數(shù)學公式


  1. A.
    在(-∞,+∞)單調(diào)增加
  2. B.
    在(-∞,+∞)單調(diào)減小
  3. C.
    在(-1,1)單調(diào)減小,其余區(qū)間單調(diào)增加
  4. D.
    在(-1,1)單調(diào)增加,其余區(qū)間單調(diào)減小
C
分析:求出原函數(shù)的導函數(shù),由導函數(shù)大于0求出x的取值范圍,得到原函數(shù)的增區(qū)間,由導函數(shù)小于0出x的取值范圍,得到原函數(shù)的減區(qū)間,從而可得正確選項.
解答:由,得:
當x<-1或x>1時,f(x)>0,當-1<x<1時,f(x)<0,
所以函數(shù)f(x)在(-∞,-1),(1,+∞)上單調(diào)遞增,在(-1,1)上單調(diào)遞減.
故選C.
點評:本題主要考查導函數(shù)的正負與原函數(shù)的單調(diào)性之間的關(guān)系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減,此題屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①已知
a
=(3,  4), 
b
=(0,  1)
,則
a
b
方向上的投影為4;
②若函數(shù)y=(a+b)cos2x+(a-b)sin2x(x∈R)的值恒等于2,則點(a,b)關(guān)于原點對稱的點的坐標是(0,-2);
③函數(shù)f(x)=
1
lgx
在(0,+∞)上是減函數(shù);
④已知函數(shù)f(x)=ax2+(b+c)x+1(a≠0)是偶函數(shù),其定義域為[a-c,b],則點(a,b)的軌跡是直線;
⑤P是△ABC邊BC的中線AD上異于A、D的動點,AD=3,則
PA
•(
PB
+
PC
)
的取值范圍是[-
9
2
,  0)

其中所有正確命題的序號是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)觀察①tan10°tan20°+tan20°tan60°+tan60°tan10°=1
    ②tan5°tan10°+tan10°tan75°+tan75°tan5°=1
由以上兩式成立,推廣到一般結(jié)論,寫出你的推論.
(Ⅱ)函數(shù)f(x)=-x2+2ax+1-a在區(qū)間[0,1]上有最大值2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù) f(x)=3x2-6x-5.
(Ⅰ)求不等式 f(x)>4的解集;
(Ⅱ)若關(guān)于x的不等式f(x)<x2-(2a+6)x+a在x∈[1,3]上恒成立,求實數(shù)a的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)-2x2+mx+5-6m(m∈R),記區(qū)間D=(1-m,m+15),若不等式g(x)<0的解集為M,且D∩M=∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

角α的終邊經(jīng)過點A(-
3
,a),且點A在拋物線y=-
1
4
x2的準線上,則sinα=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px的焦點F到其準線的距離是8,拋物線的準線與x的交點為K,點A在拋物線上且|AK|=
2
|AF|
,則△AFK的面積為( 。

查看答案和解析>>

同步練習冊答案