已知函數(shù)
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

(1);(2)函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

解析試題分析:(1)先求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義得到所求切線的斜率,再確定切點(diǎn)的坐標(biāo),從而可根據(jù)點(diǎn)斜式寫出直線的方程并將此方程化成一般方程即可;(2)分別求解不等式即可確定函數(shù)的單調(diào)增減區(qū)間.
(1)由題意
所以函數(shù)在點(diǎn)處的切線方程為,即        6分
(2)令,解得
,解得
故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為        13分.
考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.函數(shù)的單調(diào)性與導(dǎo)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)處取得極值,對(duì),恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù) 上的最小值;
(3)對(duì)一切的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知).
(1)若時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù)的最小值是.若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)求在點(diǎn)處的切線方程;
(2)證明:曲線與曲線有唯一公共點(diǎn);
(3)設(shè),比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)討論內(nèi)和在內(nèi)的零點(diǎn)情況.
(2)設(shè)內(nèi)的一個(gè)零點(diǎn),求上的最值.
(3)證明對(duì)恒有.[來

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)(2011•重慶)設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線x=﹣對(duì)稱,且f′(1)=0
(Ⅰ)求實(shí)數(shù)a,b的值
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設(shè)
① 當(dāng)時(shí),對(duì)任意,都有成立,求的最大值;
② 設(shè)的導(dǎo)函數(shù).若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(1)若求函數(shù)的極值點(diǎn)及相應(yīng)的極值;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案