【題目】已知:條件p:實(shí)數(shù)t滿(mǎn)足使對(duì)數(shù)log2(﹣2t2+7t﹣5)有意義;條件q:實(shí)數(shù)t滿(mǎn)足不等式t2﹣(a+3)t+a+20

(1)若命題¬p為真,求實(shí)數(shù)t的取值范圍;

(2)若命題p是命題q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

【答案】(1);(2).

【解析】

(1)對(duì)數(shù)log2(﹣2t2+7t﹣5)有意義,則有﹣2t2+7t﹣50,解不等式求補(bǔ)集即可;

(2)條件q可得(t﹣1)[x﹣(a+2)]<0,若命題p是命題q的充分不必要條件,則可得a+2,從而得解.

(1)條件p:實(shí)數(shù)t滿(mǎn)足使對(duì)數(shù)log2(﹣2t2+7t﹣5)有意義,則﹣2t2+7t﹣50,解得1t

若命題¬p為真,∴p為假,∴t

(2)條件q:實(shí)數(shù)t滿(mǎn)足不等式t2﹣(a+3)t+a+20,

化為(t﹣1)[x﹣(a+2)]<0.(*)

∵命題p是命題q的充分不必要條件,

∴必然a+21,(*)化為:1xa+2.

a+2.

聯(lián)立解得:a

∴實(shí)數(shù)a的取值范圍是a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex(x2﹣a),a∈R.
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程;
(2)若函數(shù)f(x)在(﹣3,0)上單調(diào)遞減,試求a的取值范圍;
(3)若函數(shù)f(x)的最小值為﹣2e,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化肥廠(chǎng)生產(chǎn)甲、乙兩種混合肥料,需要A,BC三種主要原料.生產(chǎn)1車(chē)皮甲種肥料和生產(chǎn)1車(chē)皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車(chē)皮甲種肥料,產(chǎn)生的利潤(rùn)為2萬(wàn)元;生產(chǎn)1車(chē)皮乙種肥料,產(chǎn)生的利潤(rùn)為3萬(wàn)元.分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車(chē)皮數(shù).

(1)用x,y列出滿(mǎn)足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;

(2)問(wèn)分別生產(chǎn)甲、乙兩種肥料各多少車(chē)皮,能夠產(chǎn)生最大的利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是一個(gè)由n2個(gè)正數(shù)組成的數(shù)表,用aij表示第i行第j個(gè)數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48.

(1)求an1和a4n;
(2)設(shè)bn= +(﹣1)na (n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:α∈R,sin(π﹣α)=cosα;命題q:“0<a<4”是“關(guān)于x的不等式ax2+ax+1>0的解集是實(shí)數(shù)集R”的充分必要條件,則下面結(jié)論正確的是(
A.p是假命題
B.q是真命題
C.“p∧q”是假命題
D.“p∨q”是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn), 是橢圓上的點(diǎn),設(shè)動(dòng)點(diǎn)滿(mǎn)足.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)若直線(xiàn)與曲線(xiàn)相交于, 兩個(gè)不同點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)上一點(diǎn)到其焦點(diǎn)的距離為4,橢圓 的離心率,且過(guò)拋物線(xiàn)的焦點(diǎn).

1)求拋物線(xiàn)和橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)兩不同點(diǎn),交軸于點(diǎn),已知, ,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年上半年,股票投資人袁先生同時(shí)投資了甲、乙兩只股票,其中甲股票賺錢(qián)的概率為 ,賠錢(qián)的概率是 ;乙股票賺錢(qián)的概率為 ,賠錢(qián)的概率為 .對(duì)于甲股票,若賺錢(qián)則會(huì)賺取5萬(wàn)元,若賠錢(qián)則損失4萬(wàn)元;對(duì)于乙股票,若賺錢(qián)則會(huì)賺取6萬(wàn)元,若賠錢(qián)則損失5萬(wàn)元.
(Ⅰ)求袁先生2016年上半年同時(shí)投資甲、乙兩只股票賺錢(qián)的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案