4.如圖,已知E、F兩點(diǎn)分別是正方形ABCD邊AD、AB的中點(diǎn),EF交AC于點(diǎn)M,GC垂直于ABCD所在平面.
求證:EF⊥平面GMC.

分析 連接BD交AC于O,由正方形的幾何特點(diǎn),三角形的中位線定理,及已知中GC垂直于ABCD所在平面,我們易得到EF⊥AC,EF⊥GC,進(jìn)而由線面垂直的判定定理得到EF⊥平面GMC.

解答 證明:如圖,連接BD交AC于點(diǎn)O,
∵E,F(xiàn)是正方形ABCD邊AD、AB的中點(diǎn),AC⊥BD,
∴EF⊥AC,
又∵GC⊥平面ABCD,EF?平面ABCD,
∴EF⊥GC,
∵AC∩GC=C,
∴EF⊥平面GMC.

點(diǎn)評(píng) 本題考查了空間直線與平面垂直的判定,關(guān)鍵是證線線垂直,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù) f(x)=log2(1+x)-log2(1-x).
(1)求 f(x)的定義域;
(2)判斷 f(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過A(0,1)、B(2,-1)兩點(diǎn)的面積最小的圓的方程為(  )
A.(x-1)2+y2=2B.(x-1)2+(y+1)2=5C.(x+1)2+(y-1)2=1D.(x+1)2+(y+2)2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一個(gè)正方體的平面展開圖及該正方體的直觀圖如圖所示,在正方體中,設(shè)AB終點(diǎn)為M,CF中點(diǎn)為N.

(1)請(qǐng)將字母F、G、H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)證明:直線MN∥面AEF;
(3)若正方體棱長為2,求三棱錐M-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)是R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x滿足f(x)+f(x+$\frac{3}{2}$)=0,若f(1)>1,f(2)=a,則實(shí)數(shù)a的取值范圍是a<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)動(dòng)點(diǎn)P在y軸與直線l:x=8之間的區(qū)域(含邊界)上運(yùn)動(dòng),且到點(diǎn)F(2,0)和直線l的距離之和為10,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C,過點(diǎn)S(2,4)作兩條直線SA、SB分別交曲線C于A、B兩點(diǎn),斜率分別為k1、k2
(1)求曲線C的方程;
(2)若k1•k2=1,求證:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象經(jīng)過點(diǎn)(3,8),則f(1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)α是第二象限角,cosα=-$\frac{3}{5}$,則tanα=( 。
A.$\frac{4}{3}$B.$\frac{3}{4}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案