拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為y軸,若過點(diǎn)M(0,1)任作一直線交拋物線C于A(x1,y1),B(x2,y2)兩點(diǎn),且x1•x2=-4,則拋物線C的方程為
 
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:考慮本題是填空題,可一般問題特殊化,根據(jù)題意可設(shè)拋物線的方程為x2=2py(p>0),過點(diǎn)M(0,1)任作一條直線交拋物線C于A(x1,y1),B(x2,y2)兩點(diǎn)都有x1•x2=-4,特殊情況也成立,故考慮直線為y=1時(shí),分別求出A、B的坐標(biāo),從而可求拋物線C的方程.
解答: 解:(一般問題特殊化)根據(jù)題意可設(shè)拋物線的方程為x2=2py(p>0)
過點(diǎn)M(0,1)任作一條直線交拋物線C于A(x1,y1),B(x2,y2)兩點(diǎn)都有x1•x2=-4,
考慮特殊情況也成立,故考慮直線為y=1時(shí),可得A(-
2p
,1),B(
2p
,1),
則有x1x2=-2p=-4,∴p=2
故答案為:x2=4y.
點(diǎn)評(píng):本題主要考查了拋物線方程的求解,要注意解答本題時(shí)應(yīng)用到的方法:一般問題特殊化可以減少運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x+4≥0},集合B={x|log2x>1},則A∩∁RB=( 。
A、(-∞,2)
B、(-∞,2]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}是遞增數(shù)列,且不等式x2-6x+8<0的解集為{x|a2<x<a4}.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
1
anan+1
,求數(shù)列{bn}的前項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)閇a-1,2a],則y=f(x)的值域?yàn)?div id="adma33n" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:“若(x-3)2+y2≠0,則x≠3”是
 
命題(填真、假).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2
3x
+m
是奇函數(shù),則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的圖象的一段,O坐標(biāo)原點(diǎn),P(3,1)是該段圖象的最高點(diǎn),A(5,0)是該段圖象與x軸的一個(gè)交點(diǎn),則此函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=
1
2
+
1
6
+
1
12
+…+
1
n(n+1)
, 且 SnSn+1=
3
4
,則n的值為(  )
A、9B、8C、7D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)具有線性相關(guān)關(guān)系的變量x,y,測(cè)得一組數(shù)據(jù)如下表:
x 2 4 5 6 8
y 20 40 60 70 80
參考公式:b=
R
i=1
x2y2-n
.
x
.
y
n
i=1
x
2
i
-n
.
x2
根據(jù)上表,利用最小二乘法得它們的回歸直線方程為 
y
=bx+1.5,據(jù)此模型來預(yù)測(cè)當(dāng)x=20時(shí),y的估計(jì)值為(  )
A、210.5B、212.5
C、210D、211.5

查看答案和解析>>

同步練習(xí)冊(cè)答案