【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針方向滾動(dòng),MN是小圓的一條固定直徑的兩個(gè)端點(diǎn)。那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是(

A. B. C. D.

【答案】A

【解析】試題分析:由題意可知,小圓總與大圓相內(nèi)切,且小圓總經(jīng)過大圓的圓心,設(shè)某時(shí)刻兩圓相切于點(diǎn),此時(shí)動(dòng)點(diǎn)所處位置為點(diǎn),則大圓圓弧與小圓點(diǎn)轉(zhuǎn)過的圓弧相等,以切點(diǎn)在如圖上運(yùn)動(dòng)為例,記直線與此時(shí)小圓的交點(diǎn)為,記,則,故,大圓圓弧的長為,小圓圓弧的長為 ,即,所以小圓的兩段圓弧與圓弧長相等,故點(diǎn)與點(diǎn)重合,即動(dòng)點(diǎn)在線段上運(yùn)動(dòng),同理可知,此時(shí)點(diǎn)在線段上運(yùn)動(dòng),點(diǎn)在其他象限類似可得, 的軌跡為相互垂直的線段;觀察各選項(xiàng),只有選項(xiàng)A符合,故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對應(yīng)的點(diǎn):

(1)位于虛軸上?

(2)位于一、三象限

(3)位于以原點(diǎn)為圓心,以4為半徑的圓上?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積.弧田,由圓弧和其所對的弦所圍成.公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于米的弧田. 按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積的誤差為_______平方米.(用“實(shí)際面積減去弧田面積”計(jì)算)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘有一著名的尺規(guī)作圖題“倍立方問題”:求作一個(gè)正方體,使它的體積等于已知立方體體積的2倍,倍立方問題可以利用拋物線(可尺規(guī)作圖)來解決,首先作一個(gè)通徑為其中正數(shù)為原立方體的棱長的拋物線,如圖,再作一個(gè)頂點(diǎn)與拋物線頂點(diǎn)重合而對稱軸垂直的拋物線且與交于不同于點(diǎn)的一點(diǎn),自點(diǎn)向拋物線的對稱軸作垂線,垂足為,可使以為棱長的立方體的體積為原立方體的2.

1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的標(biāo)準(zhǔn)方程;

(2)為使以為棱長的立方體的體積為原立方體的2倍,求拋物線的標(biāo)準(zhǔn)方程(只須以一個(gè)開口方向?yàn)槔?/span>.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三邊是連續(xù)的三個(gè)自然數(shù).

(Ⅰ求最小邊的取值范圍

(Ⅱ是否存在這樣的,使得其最大內(nèi)角是最小內(nèi)角的兩倍若存在,試求出這個(gè)三角形的三邊;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)棱錐的三視圖如圖,則該棱錐的全面積為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有4個(gè)人參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(1) 求出4個(gè)人中恰有2個(gè)人去 參加甲游戲的概率;

(2)求這4個(gè)人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉(zhuǎn)動(dòng),每轉(zhuǎn)一圈,摩天輪上的點(diǎn)的起始位置在最低點(diǎn)處.

(1)已知在時(shí)刻時(shí)距離地面的高度,(其中),求時(shí)距離地面的高度;

(2)當(dāng)離地面以上時(shí),可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時(shí)間可以看到公園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中, E、F分別為PD、AB的中點(diǎn),PAB為等腰直角三角形,PA平面ABCD,PA=1.

(1)求證:直線AE平面PFC;

(2)求證:PB⊥FC.

查看答案和解析>>

同步練習(xí)冊答案