【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積.弧田,由圓弧和其所對(duì)的弦所圍成.公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)等于米的弧田. 按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與實(shí)際面積的誤差為_______平方米.(用“實(shí)際面積減去弧田面積”計(jì)算)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: 的左焦點(diǎn)為,且過(guò)點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線與橢圓E交于兩點(diǎn),與的交點(diǎn)為,且滿足.
①若,求: 的值;
②設(shè)點(diǎn)是橢圓E的左頂點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),試探究:在線段上是否存在一個(gè)定點(diǎn),使得直線過(guò)定點(diǎn),如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有大小形狀完全相同的5個(gè)小球,其中3個(gè)白球的標(biāo)號(hào)分別為1、 2 、3, 2 個(gè)黑球的標(biāo)號(hào)分別為1、3.
(Ⅰ)從袋中隨機(jī)摸出兩個(gè)球,求摸到的兩球顏色與標(biāo)號(hào)都不相同的概率;
(Ⅱ)從袋中有放回地摸球,摸兩次,每次摸出一個(gè)球,求摸出的兩球的標(biāo)號(hào)之和小于4 的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為層,則每平方米的平均建筑費(fèi)用為 (單位:元).
(1)寫(xiě)出樓房每平方米的平均綜合費(fèi)用關(guān)于建造層數(shù)的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓的圓心在軸上,且過(guò)點(diǎn),.
(1)求圓的方程;
(2)直線:與軸交于點(diǎn),點(diǎn)為直線上位于第一象限內(nèi)的一點(diǎn),以為直徑的圓與圓相交于點(diǎn),.若直線的斜率為-2,求點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列,的首項(xiàng),且滿足,,其中,設(shè)數(shù)列,的前項(xiàng)和分別為,.
(Ⅰ)若不等式對(duì)一切恒成立,求.
(Ⅱ)若常數(shù)且對(duì)任意的,恒有,求的值.
(Ⅲ)在(Ⅱ)的條件下且同時(shí)滿足以下兩個(gè)條件:
(。┤舸嬖谖ㄒ徽麛(shù)的值滿足;
(ⅱ)恒成立.試問(wèn):是否存在正整數(shù),使得,若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題13分)已知函數(shù)f(x)=- (a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針?lè)较驖L動(dòng),M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn)。那么,當(dāng)小圓這樣滾過(guò)大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線上一點(diǎn)到焦點(diǎn)的距離為6.
(1)求此拋物線的方程;
(2)若此拋物線方程與直線相交于不同的兩點(diǎn)、,且中點(diǎn)橫坐標(biāo)為2,求的值.
【答案】(1);(2)2.
【解析】試題分析:
(1)由題意設(shè)拋物線方程為,則準(zhǔn)線方程為,解得,即可求解拋物線的方程;
(2)由消去得,根據(jù),解得且,得到,即可求解的值.
試題解析:
(1)由題意設(shè)拋物線方程為(),其準(zhǔn)線方程為,
∵到焦點(diǎn)的距離等于到其準(zhǔn)線的距離,∴,∴,
∴此拋物線的方程為.
(2)由消去得,
∵直線與拋物線相交于不同兩點(diǎn)、,則有
解得且,
由,解得或(舍去).
∴所求的值為2.
【題型】解答題
【結(jié)束】
20
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , , 分別為, 的中點(diǎn),點(diǎn)在線段上.
(1)求證: 平面;
(2)如果三棱錐的體積為,求點(diǎn)到面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com