【題目】已知三邊是連續(xù)的三個自然數(shù).
(Ⅰ)求最小邊的取值范圍;
(Ⅱ)是否存在這樣的,使得其最大內(nèi)角是最小內(nèi)角的兩倍?若存在,試求出這個三角形的三邊;若不存在,請說明理由.
【答案】(Ⅰ);(II)存在,且三邊分別為.
【解析】(Ⅰ)設(shè)出三角形的三邊,根據(jù)三邊關(guān)系可得所求.(Ⅱ)假設(shè)存在滿足條件的三角形,且最大角為,最小角為,則.然后根據(jù)正弦定理和余弦定理分別得到的值,建立方程后可得結(jié)論.
詳解:(Ⅰ)設(shè)角所對的邊分別是,且,
由三角形的三邊關(guān)系得,
解得.
所以最小邊的取值范圍是.
(II)由題意得三個角中最大角為,最小角為,
假設(shè)存在,使得其最大內(nèi)角是最小內(nèi)角的兩倍,即.
由正弦定理得,
即,
∴.
又由余弦定理得,
∴,
解得.
∴的三邊分別為,
即存在唯一滿足三邊是連續(xù)的三個自然數(shù)且最大角是最小角的兩倍,且三角形的三邊分別為.
另解: 設(shè),
三個角中最大角為,最小角為.
則,
∴,
由余弦定理得
代入上式化簡得,
∴,
解得.
∴三角形的三邊分別為,
即存在唯一滿足三邊是連續(xù)的三個自然數(shù)且最大角是最小角的兩倍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=+(a2-5a-6)i(a∈R).試求實數(shù)a分別為什么值時,z分別為(1)實數(shù)?(2)虛數(shù)?(3)純虛數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓的圓心在軸上,且過點,.
(1)求圓的方程;
(2)直線:與軸交于點,點為直線上位于第一象限內(nèi)的一點,以為直徑的圓與圓相交于點,.若直線的斜率為-2,求點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題13分)已知函數(shù)f(x)=- (a>0,x>0).
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點。那么,當小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點B且斜率為k的動直線l與橢圓C的另一個交點為M, =λ( ),若點N在圓O上,求正實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷售每噸甲產(chǎn)品可獲得利潤5萬元,銷售每噸乙產(chǎn)品可獲得利潤3萬元。該企業(yè)在一個生產(chǎn)周期消耗A原料不超過13噸,B原料不超過18噸。問該企業(yè)如何安排可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)兩點A(4,0),B(0,2)
(1)求過P(2,3)點且與直線AB平行的直線l的方程;
(2)設(shè)O(0,0),求△OAB外接圓方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com