【題目】已知球的直徑,是該球球面上的兩點,,,則棱錐的體積為_______.

【答案】

【解析】

設球心為點O,作AB中點D,連接OD,CD,說明SC是球的直徑,利用余弦定理,三角形的面積公式求出S△SCD,和棱錐的高AB,即可求出棱錐的體積.

:設球心為點O,作AB中點D,連接OD,CD.因為線段SC是球的直徑,

所以它也是大圓的直徑,則易得:∠SAC=∠SBC=90°

所以在RtSAC中,SC=4,ASC=30° 得:AC=2,SA=2

又在RtSBC中,SC=4,BSC=30° 得:BC=2,SB=2 則:SA=SB,AC=BC

因為點D是AB的中點所以在等腰三角形ASB中,SDAB且SD===

在等腰三角形CAB中,CDAB且CD===

又SD交CD于點D 所以:AB平面SCD 即:棱錐S﹣ABC的體積:V=ABS△SCD,

因為:SD=,CD=,SC=4 所以由余弦定理得:cos∠SDC=(SD2+CD2﹣SC2=(+﹣16)==

則:sin∠SDC==

由三角形面積公式得SCD的面積S=SDCDsin∠SDC==3

所以:棱錐S﹣ABC的體積:V=ABS△SCD==

故答案為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機對心肺疾病入院的人進行問卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

合計

(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中選人,求恰好有名女性的概率;

(3)為了研究心肺疾病是否與性別有關,請計算出統(tǒng)計量,你有多大把握認為心肺疾病與性別有關?

下面的臨界值表供參考:

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】校園準備綠化一塊直徑為的半圓形空地,點在半圓圓弧上,外的地方種草,的內(nèi)接正方形為一水池(,邊上),其余地方種花,若, ,設的面積為,正方形面積為;

1)用表示;

2)當固定,變化時,求最小值及此時的角;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺虧損50元,根據(jù)往年的經(jīng)驗,每天的需求量與當天的最低氣溫有關,如果最低氣溫位于區(qū)間,需求量為100臺;最低氣溫位于區(qū)間,需求量為200臺;最低氣溫位于區(qū)間,需求量為300臺。公司銷售部為了確定11月份的訂購計劃,統(tǒng)計了前三年11月份各天的最低氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最低氣溫(℃)

天數(shù)

11

25

36

16

2

以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.

求11月份這種電暖氣每日需求量(單位:臺)的分布列;

若公司銷售部以每日銷售利潤(單位:元)的數(shù)學期望為決策依據(jù),計劃11月份每日訂購200臺或250臺,兩者之中選其一,應選哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

,求曲線在點處的切線與坐標軸圍成的三角形的面積

在區(qū)間上恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游風景區(qū)發(fā)行的紀念章即將投放市場,根據(jù)市場調(diào)研情況,預計每枚該紀念章的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:

上市時間x

2

6

20

市場價y

102

78

120

1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述該紀念章的市場價y與上市時間x的變化關系并說明理由:①;②;③;

2)利用你選取的函數(shù),求該紀念章市場價最低時的上市天數(shù)及最低的價格;

3)利用你選取的函數(shù),若存在,使得不等式成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于的不等式為實數(shù))的解集為,集合.

1)若,求的取值范圍;

2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最小值及取到最小值時自變量x的集合;

(2)指出函數(shù)y的圖象可以由函數(shù)ysinx的圖象經(jīng)過哪些變換得到;

(3)x[0,m]時,函數(shù)yf(x)的值域為,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案