【題目】已知關(guān)于的不等式為實數(shù))的解集為,集合.

1)若,求的取值范圍;

2)若,求的取值范圍.

【答案】1;(2.

【解析】

1)由題意可知,關(guān)于的不等式上恒成立,分兩種情況討論:,由此可得出實數(shù)的取值范圍;

2)由題意知,關(guān)于的不等式在區(qū)間上恒成立,對實數(shù)分類討論,根據(jù)題意列出關(guān)于實數(shù)的不等式(組),即可求出實數(shù)的取值范圍.

1,則關(guān)于的不等式上恒成立.

①當(dāng)時,則有,解得,不合乎題意;

②當(dāng)時,則有,整理得,解得

此時.

綜上所述,實數(shù)的取值范圍是;

2)由題意知,關(guān)于的不等式在區(qū)間上恒成立.

①當(dāng)時,則有,解得,合乎題意;

②當(dāng)時,令,則,解得,

此時;

③當(dāng)且當(dāng)時,,則,且,

此時,,合乎題意.

綜上所述,實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)分別是圓心在原點(diǎn),半徑為的圓上的動點(diǎn).動點(diǎn)從初始位置開始,按逆時針方向以角速度作圓周運(yùn)動,同時點(diǎn)從初始位置開始,按順時針方向以角速度作圓周運(yùn)動.記時刻,點(diǎn)的縱坐標(biāo)分別為.

(Ⅰ)求時刻,兩點(diǎn)間的距離;

(Ⅱ)求關(guān)于時間的函數(shù)關(guān)系式,并求當(dāng)時,這個函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知球的直徑,是該球球面上的兩點(diǎn),,,則棱錐的體積為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗公式:P=,Q= .今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一批材料可以建成200m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形,如何設(shè)計這塊矩形場地的長和寬,能使面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:

組別

2

3

5

15

18

12

0

5

10

10

7

13

(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?

(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.

①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;

②為了鼓勵市民關(guān)注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達(dá)人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應(yīng)的概率.如下表:

紅包金額(單位:元)

10

20

概率

現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,其左頂點(diǎn)在圓上.

(1)求橢圓的方程;

(2)若點(diǎn)為橢圓上不同于點(diǎn) 的點(diǎn),直線與圓的另一個交點(diǎn)為.是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的右頂點(diǎn)到其一條漸近線的距離等于,拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則拋物線上的動點(diǎn)到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個班中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)

分?jǐn)?shù)

甲班頻數(shù)

乙班頻數(shù)

(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)現(xiàn)從上述樣本“成績不優(yōu)秀”的學(xué)生中,抽取人進(jìn)行考核,記“成績不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

同步練習(xí)冊答案