【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺虧損50元,根據(jù)往年的經(jīng)驗,每天的需求量與當天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間,需求量為100臺;最低氣溫位于區(qū)間,需求量為200臺;最低氣溫位于區(qū)間,需求量為300臺。公司銷售部為了確定11月份的訂購計劃,統(tǒng)計了前三年11月份各天的最低氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:
最低氣溫(℃) | |||||
天數(shù) | 11 | 25 | 36 | 16 | 2 |
以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.
求11月份這種電暖氣每日需求量(單位:臺)的分布列;
若公司銷售部以每日銷售利潤(單位:元)的數(shù)學期望為決策依據(jù),計劃11月份每日訂購200臺或250臺,兩者之中選其一,應(yīng)選哪個?
【答案】(1)X的分布列為
X | 100 | 200 | 300 |
P | 0.2 | 0.4 | 0.4 |
(2)11月每日應(yīng)訂購250臺.
【解析】試題分析:(1)由題意,易知離散型隨機變量X的可能取值為100,200,300,根據(jù)“頻率代替概率”分別求出各值對應(yīng)的概率,從而可列出X的分布列;(2)根據(jù)題意,由隨機變量的期望值公式,分別算出訂購200臺,250臺的數(shù)學期望進行比較,從而可確定訂購250臺時所得期望值最大.
試題解析:(1)由已知X的可能取值為100,200,300
X的分布列為
X | 100 | 200 | 300 |
P | 0.2 | 0.4 | 0.4 |
(2) 由已知
①當訂購200臺時,
E((元)
② 當訂購250臺時,
E(
(元)
綜上所求,當訂購臺時,Y的數(shù)學期望最大,11月每日應(yīng)訂購250臺。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣ex(a∈R).其中e是自然對數(shù)的底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性并求極值;
(2)令函數(shù)g(x)=f(x)+ex,若x∈[1,+∞)時,g(x)≥0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點分別是圓心在原點,半徑為和的圓上的動點.動點從初始位置開始,按逆時針方向以角速度作圓周運動,同時點從初始位置開始,按順時針方向以角速度作圓周運動.記時刻,點的縱坐標分別為.
(Ⅰ)求時刻,兩點間的距離;
(Ⅱ)求關(guān)于時間的函數(shù)關(guān)系式,并求當時,這個函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】實數(shù)m取什么值時,復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點.
(1)位于第四象限?
(2)位于第一、三象限?
(3)位于直線y=x上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某校學生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學生960人,其中男生560人,從全校學生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)的時間的統(tǒng)計數(shù)據(jù)如下表:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95多的把握認為該校學生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?
(3)以樣本中學生參加社區(qū)服務(wù)時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學生中隨機調(diào)查6名學生,試估計6名學生中一周參加社區(qū)服務(wù)時間超過1小時的人數(shù).
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為紀念重慶黑山谷晉升國家5A級景區(qū)五周年,特發(fā)行黑山谷紀念郵票,從2017年11月1日起開始上市.通過市場調(diào)查,得到該紀念郵票在一周內(nèi)每1張的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:
上市時間x天 | 1 | 2 | 6 |
市場價y元 | 5 | 2 | 10 |
(Ⅰ)分析上表數(shù)據(jù),說明黑山谷紀念郵票的市場價y(單位:元)與上市時間x(單位:天)的變化關(guān)系,并判斷y與x滿足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對數(shù)函數(shù),并求出函數(shù)的解析式;
(Ⅱ)利用你選取的函數(shù),求黑山谷紀念郵票市場價最低時的上市天數(shù)及最低的價格.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗公式:P=,Q= .今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線和距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com