【題目】某校為了解高一學(xué)生周末的“閱讀時(shí)間”,從高一年級(jí)中隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)査,獲得了每人的周末“閱讀時(shí)間”(單位:小時(shí)),按照分成組,制成樣本的頻率分布直方圖如圖所示:
(Ⅰ)求圖中的值;
(Ⅱ)估計(jì)該校高一學(xué)生周末“閱讀時(shí)間”的中位數(shù);
(Ⅲ)用樣本頻率代替概率. 現(xiàn)從全校高一年級(jí)隨機(jī)抽取名學(xué)生,其中有名學(xué)生“閱讀時(shí)間”在小時(shí)內(nèi)的概率為,其中.當(dāng)取最大時(shí),求的值.
【答案】(Ⅰ); (Ⅱ);(Ⅲ).
【解析】試題分析:
(Ⅰ)利用頻率分布直方圖中所有小矩形面積(頻率)之和為1可求得;
(Ⅱ)中位數(shù)就是把直方圖所有小矩形面積平分的那一點(diǎn);
(Ⅲ)在取出的名學(xué)生中,周末閱讀時(shí)間在中的有人,則服從二項(xiàng)分布,由此可得,其中.用相除法可求得的最大值.
試題解析:
(Ⅰ)
由頻率分布直方圖,可知,
周末的“閱讀時(shí)間”在的頻率為.
同理,在等組的頻率分別為,
由
解得.
(Ⅱ)設(shè)中位數(shù)為小時(shí).
因?yàn)榍?/span>組的頻率之和為 ,
而前組的頻率之和為 ,
所以.
由 ,解得.
故可估計(jì)該校高一學(xué)生周末“閱讀時(shí)間”的中位數(shù)為小時(shí).
(Ⅲ)設(shè)在取出的名學(xué)生中,周末閱讀時(shí)間在中的有人,則服從二項(xiàng)分布,即,則恰好有名學(xué)生周末閱讀時(shí)間在中的概率為
,其中.
設(shè).
若,則;
若,則.
所以當(dāng)時(shí), 最大.
所以的取值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)證明在上為增函數(shù);
(2)當(dāng)時(shí),解不等式;
(3)若在上恒成立,求的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+2在區(qū)間(0,4]的值域?yàn)椋?/span> )
A.(2,10]
B.[1,10]
C.(1,10]
D.[2,10]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y﹣29=0相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線ax﹣y+5=0(a>0)與圓相交于A,B兩點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù)a,使得弦AB的垂直平分線l過點(diǎn)P(﹣2,4),若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span> )
A.[0,1)
B.[0,2)
C.(1,2)
D.[0,1)∪(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個(gè)底邊長(zhǎng)為8,高為4的等腰三角形,側(cè)視圖(或稱左視圖)是一個(gè)底邊長(zhǎng)為6,高為4的等腰三角形.
(Ⅰ)求該幾何體的體積V;
(Ⅱ)求該幾何體的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的短軸長(zhǎng)為2,離心率為 ,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記 ,若直線l的斜率k≥ ,則λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不用計(jì)算器求下列各式的值
(1)lg52+ lg8+lg5lg20+(lg2)2;
(2)設(shè)2a=5b=m,且 + =2,求m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD= .
(Ⅰ)求證:AE∥平面DCF;
(Ⅱ)當(dāng)AB的長(zhǎng)為何值時(shí),二面角A﹣EF﹣C的大小為60°?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com