【題目】設(shè)、是兩條不同的直線, , , 是三個(gè)不同的平面,給出下列四個(gè)命題:
①若, ,則 ②若, , ,則
③若, ,則 ④若, ,則
其中正確命題的序號是( ).
A. ①和② B. ②和③ C. ③和④ D. ①和④
【答案】A
【解析】對于①,因?yàn)?/span>,所以經(jīng)過作平面,使,可得,
又因?yàn)?/span>, ,所以,結(jié)合得.由此可得①是真命題;
對于②,因?yàn)?/span>且,所以,
結(jié)合,可得,故②是真命題;
對于③,設(shè)直線、是位于正方體上底面所在平面內(nèi)的相交直線,
而平面是正方體下底面所在的平面,
則有且成立,但不能推出,故③不正確;
對于④,設(shè)平面、、是位于正方體經(jīng)過同一個(gè)頂點(diǎn)的三個(gè)面,
則有且,但是,推不出,故④不正確.
綜上所述,其中正確命題的序號是①和②,
故選: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) .
(1)求函數(shù) 的最大值;
(2)對于任意 ,且 ,是否存在實(shí)數(shù) ,使 恒成立,若存在求出 的范圍,若不存在,說明理由;
(3)若正項(xiàng)數(shù)列 滿足 ,且數(shù)列 的前 項(xiàng)和為 ,試判斷 與 的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 中,底面ABCD為矩形,側(cè)面PAD為正三角形,且平面 ABCD平面, E為PD中點(diǎn), AD=2.
(Ⅰ)求證:平面 平面PCD;
(Ⅱ)若二面角 的平面角大小 滿足 ,求四棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對n∈N* , bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的公差d≠0,它的前n項(xiàng)和為Sn,若S5=70,且a2,a7,a22成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,求證: ≤Tn<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,面為正方形,面為等腰梯形, , , , .
(I)求證: 平面.
(II)求與平面所成角的正弦值.
(III)線段上是否存在點(diǎn),使平面平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(單位:分鐘)分別為數(shù)據(jù) (成績不為0).
(Ⅰ)24名男選手成績的莖葉圖如圖⑴所示,若將男選手成績由好到差編為1~24號,再用系統(tǒng)抽樣方法從中抽取6人,求其中成績在區(qū)間上的選手人數(shù);
(Ⅱ)如圖⑵所示的程序用來對這50名選手的成績進(jìn)行統(tǒng)計(jì).為了便于區(qū)別性別,輸入時(shí),男選手的成績數(shù)據(jù)用正數(shù),女選手的成績數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),請完成圖⑵中空白的判斷框①處的填寫,并說明輸出數(shù)值和的統(tǒng)計(jì)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是( )
A. 在(-2,1)上f(x)是增函數(shù) B. 在(1,3)上f(x)是減函數(shù)
C. 當(dāng)x=2時(shí),f(x)取極大值 D. 當(dāng)x=4時(shí),f(x)取極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;
(2)若函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)伸長到原來的倍,所得的圖象與直線交點(diǎn)的橫坐標(biāo)由小到大依次是,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com