【題目】已知函數(shù).
(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;
(2)若函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,所得的圖象與直線交點(diǎn)的橫坐標(biāo)由小到大依次是,求的值.
【答案】(1),;(2).
【解析】試題分析:(1)先利用二倍角的正弦公式以及兩角的正弦公式公式對(duì)函數(shù)解析式化簡(jiǎn),可得,進(jìn)而根據(jù)周期公式求得函數(shù)的最小周期,根據(jù)正弦函數(shù)單調(diào)性列不等式求得函數(shù)的單調(diào)減區(qū)間;(2)先求得放縮后函數(shù)的圖象的解析式,根據(jù)正弦曲線的對(duì)稱(chēng)性、周期性可知,,…,=1,從而根據(jù)等差數(shù)列的求和公式可得答案.
試題解析:因?yàn)?/span>f(x)=2sinsin·cos-sin·cos,
所以f(x)=sincos-cos
=sin-cos=sin=sin 2x .
(1)函數(shù)f(x)的最小正周期.
令2
所以函數(shù)f(x)的單調(diào)遞減區(qū)間為,k∈Z.
(2)函數(shù)f(x)(x>0)的圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,
所得的圖象的解析式為y=sin x.
由正弦曲線的對(duì)稱(chēng)性、周期性可知,,…,=198π+, 所以x1+x2+…+x199+x200=π+5π+…+393π+397π==19 900π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、是兩條不同的直線, , , 是三個(gè)不同的平面,給出下列四個(gè)命題:
①若, ,則 ②若, , ,則
③若, ,則 ④若, ,則
其中正確命題的序號(hào)是( ).
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018河南南陽(yáng)市一中上學(xué)期第三次月考】已知點(diǎn)為坐標(biāo)原點(diǎn), 是橢圓上的兩個(gè)動(dòng)點(diǎn),滿(mǎn)足直線與直線關(guān)于直線對(duì)稱(chēng).
(I)證明直線的斜率為定值,并求出這個(gè)定值;
(II)求的面積最大時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)已畫(huà)出函數(shù)在軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫(xiě)出函數(shù)的增區(qū)間;
⑵寫(xiě)出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分))
某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿場(chǎng)售價(jià)與上市時(shí)間的關(guān)系用圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖二的拋物線段表示。
(Ⅰ)寫(xiě)出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式;寫(xiě)出圖二表示的種植成本與上市時(shí)間的函數(shù)關(guān)系式;
(Ⅱ)假如設(shè)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿純收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/102㎏,時(shí)間單位:天)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),函數(shù)與在處的切線互相垂直,求的值;
(2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;
(3)是否存在正實(shí)數(shù),使得對(duì)任意正實(shí)數(shù)恒成立?若存在,求出滿(mǎn)足條件的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}滿(mǎn)足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為( )
A. 5032 B. 5044 C. 5048 D. 5050
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿(mǎn)足:b1=,而b2,b5,ba14成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.
(1)求證: ;
(2)若為中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com