已知tan(α+
π
4
)=-
1
2
,
π
2
<α<π.
(1)求tanα的值;
(2)求
sin2α-2cos2α
2
sin(α-
π
4
)
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)已知等式左邊利用兩角和與差的正切函數(shù)公式化簡(jiǎn),整理即可求出tanα的值;
(2)由tanα的值及α的范圍,利用同角三角函數(shù)間基本關(guān)系求出cosα的值,原式化簡(jiǎn)后將cosα的值代入計(jì)算即可求出值.
解答: 解:(1)∵tan(α+
π
4
)=
tanα+1
1-tanα
=-
1
2
,
∴tanα=-3;
(2)∵tanα=-3,
π
2
<α<π,
∴cosα=-
1
1+tan2α
=-
10
10

則原式=
2sinαcosα-2cos2α
2
(
2
2
sinα-
2
2
cosα)
=
2cosα(sinα-cosα)
sinα-cosα
=2cosα=-
2
10
10
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ex-
1
x
的零點(diǎn)所在的區(qū)間是( 。
A、(0,
1
2
 )
B、( 
1
2
,1)
C、(1,
3
2
 )
D、( 
3
2
,2 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一個(gè)三位數(shù)的十位數(shù)字均小于個(gè)位和百位數(shù)字,我們稱這個(gè)數(shù)是“凹形”三位數(shù).現(xiàn)用0,1,2,…,9這十個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的三位數(shù),其中是“凹形”三位數(shù)有
 
個(gè)(用數(shù)值作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex(ax+b)-x2+4x,曲線y=f(x)在點(diǎn)(0,f(0))處切線方程為y=2x-3.
(Ⅰ)求a,b的值;
(Ⅱ)討論f(x)的單調(diào)性,并求f(x)的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=
5
6
,公差d=-
1
6
,前a項(xiàng)和Sa=-5,求a的值及通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且a2+c2-b2=ac,
(1)求角B的值;
(2)設(shè)函數(shù)f(x)=sin(2x+B),求f(
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某醫(yī)院,因?yàn)榛夹呐K病而住院的60名男性病人中有40人禿頂;而另外50名不是因?yàn)榛夹呐K病而住院的男性病人中有20人禿頂.求:
(1)根據(jù)題目所給的數(shù)據(jù)列出2×2列聯(lián)表:
(2)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為禿頂與患心臟病有關(guān)系?(附錄(1):利用隨機(jī)變量公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得觀測(cè)值為k.(2)參照附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將數(shù)列{an}按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,并同時(shí)滿足以下兩個(gè)條件:①各行的第一個(gè)數(shù)a1,a2,a5,…構(gòu)成公差為d的等差數(shù)列;②從第二行起,每行各數(shù)按從左到右的順序都構(gòu)成公比為q的等比數(shù)列.若a1=1,a3=4,a5=3.
(Ⅰ)求d,q的值;
(Ⅱ)求第n行各數(shù)的和T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=ax2+bx+c(a>0)對(duì)任意的實(shí)數(shù)x,都有f(1+x)=4f(
x
2
)成立.
(1)求
b
a
,
c
a
的值;
(2)解關(guān)于x的不等式f(x)<4a;
(3)若f(0)=1且關(guān)于α不等式f(sinα)≤sinα+m恒成立,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案