【題目】下列說法中不正確的是________.(填序號(hào))

①若a∈R,則“<1”是“a>1”的必要不充分條件;

②“pq為真命題”是“pq為真命題”的必要不充分條件;

③若命題p:“x∈R,sin x+cos x”,則p是真命題;

④命題“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.

【答案】②④

【解析】<1,得a<0a>1,反之,由a>1,得<1,∴“<1”a>1”的必要不充分條件,故正確;

pq為真命題,知p,q均為真命題,所以pq為真命題,反之,由pq為真命題,得pq至少有一個(gè)為真命題,所以pq不一定為真命題,所以pq為真命題pq為真命題的充分不必要條件,故不正確;

∵sin x+cos x,∴命題p為真命題,正確;

命題x0∈R,+2x0+3<0”的否定是x∈R,x2+2x+3≥0”,故不正確.

故答案:②④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點(diǎn),過AE作平面分別與棱PB、PD交于M、N兩點(diǎn).
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是BC的中點(diǎn).

(1)求證:A1C∥平面AB1D;
(2)設(shè)M為棱CC1的點(diǎn),且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對任意n∈N*都有a13+a23+a33+…+an3=Sn2 , 其中Sn為數(shù)列{an}的前n和.
(1)求證:an2=2Sn﹣an;
(2)求數(shù)列{an}的通項(xiàng)公式
(3)設(shè)bn=3n+(﹣1)n﹣1λ2 (λ為非零整數(shù),n∈N*)試確定λ的值,使得對任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓E: (a>b>0)過點(diǎn)( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點(diǎn),橢圓E內(nèi)部的動(dòng)點(diǎn)P使|PM|、|PO|、|PN|成等比數(shù)列,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, ADBC交于點(diǎn)M,設(shè),以、為基底表示

【答案】

【解析】試題分析:由A、M、D三點(diǎn)共線,知;由C、M、B三點(diǎn)共線,知

,所以,所以=

試題解析:

設(shè),

因?yàn)?/span>A、M、D三點(diǎn)共線,所以,即

因?yàn)?/span>C、M、B三點(diǎn)共線,所以,即

解得,所以

型】解答
結(jié)束】
20

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{ }的前n項(xiàng)和為Sn , 則S1S2S3…S10=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線 C2的極坐標(biāo)方程為ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q為曲線 C2上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊答案