【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)過點( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點,橢圓E內部的動點P使|PM|、|PO|、|PN|成等比數列,求 的取值范圍.
【答案】
(1)解:∵橢圓E: (a>b>0)與直線 x+2y﹣4=0相切,聯立 ,
整理得( )x2﹣2 a2x+4a2﹣a2b2=0,
由△=0,可得 …①
∵橢圓E: (a>b>0)過點( ,1),∴ …②
由①②得a2=4,b2=2.∴橢圓E的方程:
(2)解:由(1)得M(﹣2,0))、PN(2,0),設P(m,n)
∵|PM|、|PO|、|PN|成等比數列,
∴|PO|2=|PN||PM|(m2+n2)2=
m2=n2+2,…③
∵ ,∴ =2n2﹣2
∵P在橢圓E內部,∴0≤n2<1,
∴ .即 的取值范圍為[﹣2,0)
【解析】(1)由橢圓E: (a>b>0)與直線 x+2y﹣4=0相切,聯立 ,由△=0,可得 …①,由橢圓E: (a>b>0)過點( ,1),∴ …②,由①②得a2 , b2(2)設P(m,n),由|PO|2=|PN||PM|(m2+n2)2= m2=n2+2, ∴ =2n2﹣2,由n的范圍求得其范圍,
【考點精析】解答此題的關鍵在于理解橢圓的標準方程的相關知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數學 來源: 題型:
【題目】設函數f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數y=f(x)g(x)的奇偶性;
(2)當b=0時,判斷函數y= 在(﹣1,1)上的單調性,并說明理由;
(3)設h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E: (a>b>0)過點( ,1),且與直線 x+2y﹣4=0相切.
(1)求橢圓E的方程;
(2)若橢圓E與x軸交于M、N兩點,橢圓E內部的動點P使|PM|、|PO|、|PN|成等比數列,求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且對任意正整數n,都有3an=2Sn+3成立.
(1)求數列{an}的通項公式;
(2)設bn=log3an , 求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中不正確的是________.(填序號)
①若a∈R,則“<1”是“a>1”的必要不充分條件;
②“p∧q為真命題”是“p∨q為真命題”的必要不充分條件;
③若命題p:“x∈R,sin x+cos x≤”,則p是真命題;
④命題“x0∈R,+2x0+3<0”的否定是“x∈R,x2+2x+3>0”.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分別為A1C1、B1C1的中點,D為棱CC1上任一點.
(Ⅰ)求證:直線EF∥平面ABD;
(Ⅱ)求證:平面ABD⊥平面BCC1B1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的最小值為.
(1)求;
(2)若,求及此時的最大值.
【答案】(1) ;(2)答案見解析.
【解析】試題分析:(1)利用同角三角函數間的基本關系化簡函數解析式后,分三種情況:①小于﹣1時②大于﹣1而小于1時③大于1時,根據二次函數求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一問的g(a)的第二和第三個解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.
試題解析:
(1)由
.這里
①若則當時,
②若當時,
③若則當時,
因此
(2)
①若,則有得,矛盾;
②若,則有即或(舍).
時, 此時
當時, 取得最大值為5.
點睛:二次函數在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數圖象的頂點處取到;常見題型有:(1)軸固定區(qū)間也固定;(2)軸動(軸含參數),區(qū)間固定;(3)軸固定,區(qū)間動(區(qū)間含參數). 找最值的關鍵是:(1)圖象的開口方向;(2)對稱軸與區(qū)間的位置關系;(3)結合圖象及單調性確定函數最值.
【題型】填空題
【結束】
21
【題目】已知兩個不共線的向量的夾角為,且為正實數.
(1)若與垂直,求;
(2)若,求的最小值及對應的的值,并指出此時向量與的位置關系.
(3)若為銳角,對于正實數,關于的方程有兩個不同的正實數解,且,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數據如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y關于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計公式分別為: = , = ﹣ .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com