已知正項數(shù)列{an}的前n項和為Sn,且2Sn=an+
1
an
,則S2015的值是( 。
A、2015+
2015
2015
B、2015-
2015
2015
C、2015
D、
2015
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:2Sn=an+
1
an
,可得2a1=a1+
1
a1
,解得a1=1.同理解得a2=
2
-1
,a3=
3
-
2
.…,猜想an=
n
-
n-1
..驗證滿足條件,進(jìn)而得出.
解答: 解:∵2Sn=an+
1
an
,∴2a1=a1+
1
a1
,解得a1=1.
當(dāng)n=2時,2(1+a2)=a2+
1
a2
,化為
a
2
2
+2a2-1
=0,又a2>0,解得a2=
2
-1
,
同理可得a3=
3
-
2

猜想an=
n
-
n-1

驗證:2Sn=2[(1-0)+(
2
-1)+
…+(
n
-
n-1
)]
=2
n
,an+
1
an
=
n
-
n-1
+
1
n
-
n-1
=2
n

因此滿足2Sn=an+
1
an
,
an=
n
-
n-1

∴Sn=
n

∴S2015=
2015

故選:D.
點評:本題考查了猜想分析歸納得出數(shù)列的通項公式的方法、遞推式的應(yīng)用,考查了由特殊到一般的思想方法,考查了推理能力與計算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4,5},B={1,3,5},則∁AB=( 。
A、{1,3,5}
B、{2,4}
C、{1,2,3,4,5}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,凸多面體ABCED中,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,BC=
2
,CE=2,F(xiàn)為BC的中點.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:平面BDE⊥平面BCE;
( III)求三棱錐F-ADB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率e=
2
2
,F(xiàn)是右焦點,A是右頂點,B是橢圓上一點,BF⊥x軸,|BF|=
2
2

(1)求橢圓C的方程;
(2)設(shè)直線l:x=ty+λ是橢圓C的一條切線,點M(-
2
,y1),點N(
2
,y2)是切線l上兩個點,證明:當(dāng)t、λ變化時,以 M N為直徑的圓過x軸上的定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某超市在2015年元旦期間舉行抽獎活動,規(guī)則是:從裝有編號為0,1,2,3四個小球的抽獎箱中同時抽出兩個小球,兩個小球號碼之和等于5中一等獎,等于4中二等獎,等于3中三等獎.
(1)求中三等獎的概率;
(2)求中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,錯誤的是( 。
A、平行于同一平面的兩個平面平行
B、垂直于同一個平面的兩個平面平行
C、若a,b是異面直線,則經(jīng)過直線a與直線b平行的平面有且只有一個
D、若一個平面與兩個平行平面相交,則交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[-2,2]上的奇函數(shù)f(x)滿足:當(dāng)x∈(0,2]時,f(x)=x(x-2).
(1)求f(x)的解析式和值域;
(2)設(shè)g(x)=ln(x+2)-ax-2a,其中常數(shù)a>0.
①試指出函數(shù)F(x)=g(f(x))的零點個數(shù);
②若當(dāng)1+
1
k
是函數(shù)F(x)=g(f(x))的一個零點時,相應(yīng)的常數(shù)a記為ak,其中k=1,2,…,n.
證明:a1+a2+…+an
7
6
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-
1
2
ax2-bx(a≤0).
(Ⅰ)若x=1是f(x)的極大值點,求a的取值范圍;
(Ⅱ)當(dāng)a=0,b=-1時,函數(shù)g(x)=mx2-f(x)有唯一零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=
1
4
x2
,則其焦點坐標(biāo)為
 
;準(zhǔn)線方程為
 

查看答案和解析>>

同步練習(xí)冊答案