如果不等式組
x≥0
y≥2x
kx-y+1≥0
表示的平面區(qū)域是一個直角三角形,則實數(shù)k的值為(  )
A、-
1
2
B、0
C、
1
2
D、0或-
1
2
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用平面區(qū)域是直角三角形即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖,
直線kx-y+1=0,過定點A(0,1),
當(dāng)直線kx-y+1=0與直線x=0垂直時,滿足條件,此時k=0,
當(dāng)直線kx-y+1=0與直線y=2x垂直時,滿足條件,此時k=-
1
2

綜上k=0或-
1
2
,
故選:D
點評:本題主要考查一元二次不等式組表示平面區(qū)域,以及直線垂直的等價條件,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差恒不變;
②設(shè)有一個回歸方程
?
y
=3-5x,變量x增加一個單位時,y平均增加5個單位;
③線性回歸方程
?
y
=bx+a必過(
.
x
,
.
y
)
;
④曲線上的點與該點的坐標(biāo)之間具有相關(guān)關(guān)系;
⑤在一個2×2列聯(lián)表中,由計算得k2=13.079,則其兩個變量間有關(guān)系的可能性是90%;
其中錯誤的個數(shù)是( 。
本題可以參考兩個分類變量x和y有關(guān)系的可信度表:
P(k2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1<x<2},集合B={x|-a<x<a}.若命題“x∈A”是命題“x∈B”的充分不必要條件,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(-1,
3
),則sin(α+
π
2
)的值=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x>2”是“x>0”成立的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x
1
-n2+2n+3
(n∈Z)的圖象在[0,+∞)上單調(diào)遞增,解不等式f(x2-x)>f(x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三點A(2,2),B(a,0),C(0,b)(ab≠0)共線,則
1
a
+
1
b
的值等于( 。
A、
1
2
B、1
C、-1
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式ax2+bx-2<0的解集為{x|-2<x<
1
4
},則a+b等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,Sn+1=4an+k(k≠-1,n∈N*).
(1)設(shè)bn=an+1-2an,求證:{bn}是等比數(shù)列:
(2)設(shè)cn=
an
2n
,且{cn}是公差為1的等差數(shù)列,求k及Sn的值.

查看答案和解析>>

同步練習(xí)冊答案