【題目】已知函數(shù)是常數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程,并證明對(duì)任意,切線經(jīng)過定點(diǎn);

(Ⅱ)當(dāng)時(shí),設(shè),的兩個(gè)正的零點(diǎn),求證:

【答案】(1) 切線過定點(diǎn) (2)見解析

【解析】試題分析】(I)對(duì)函數(shù)求導(dǎo),代入求得斜率,利用點(diǎn)斜式寫出切線方程并化簡(jiǎn),由此求得直線過定點(diǎn).(II)當(dāng)時(shí),利用二分法可判斷函數(shù)在區(qū)間內(nèi)有零點(diǎn).利用導(dǎo)數(shù)可判斷函數(shù)在區(qū)間內(nèi), 有唯一零點(diǎn),再根據(jù)函數(shù)的單調(diào)性可證得.

試題解析

(Ⅰ)

,所求切線方程為

,即

切線方程等價(jià)于,當(dāng)時(shí),恒有,即切線過定點(diǎn)。

(Ⅱ)函數(shù)的定義域?yàn)?/span>,

曲線在各定義域區(qū)間內(nèi)是連續(xù)不斷的曲線。

時(shí),,

所以在區(qū)間內(nèi)有零點(diǎn)。

在區(qū)間內(nèi),,單調(diào)遞減。

,

,則,

所以在區(qū)間內(nèi)有零點(diǎn)

單調(diào)遞減知,在區(qū)間內(nèi)有唯一零點(diǎn)

因?yàn)?/span>,

所以,

單調(diào)遞減知,,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若函數(shù)的圖象在點(diǎn)處的切線平行于直線,求的值;

(2)討論函數(shù)在定義域上的單調(diào)性;

3)若函數(shù)上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點(diǎn),過點(diǎn)F且方向向量為的光線,經(jīng)直線反射后通過左頂點(diǎn)D.

(I)求橢圓的方程;

(II)過點(diǎn)F作斜率為的直線交橢圓于A, B兩點(diǎn),M為AB的中點(diǎn),直線OM (0為原點(diǎn))與直線交于點(diǎn)P,若滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以 , , 分別表示三角形的面積,大斜,中斜,小斜; , 分別為對(duì)應(yīng)的大斜,中斜,小斜上的高;則 .若在 , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

【答案】

【解析】根據(jù)題意可知: ,故設(shè),由 代入可得,由余弦定理可得cosA=,所以由正弦定理得三角形外接圓半徑為

型】填空
結(jié)束】
17

【題目】在等差數(shù)列中,已知公差, ,且, 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.

(1)求橢圓的方程;

(2)動(dòng)直線 , )交橢圓、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,曲線的參數(shù)方程是為參數(shù)).

Ⅰ)將曲線的參數(shù)方程化為普通方程;

Ⅱ)求曲線與曲線交點(diǎn)的極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,F(xiàn)(-1, 0)是橢圓的左焦點(diǎn),過點(diǎn)F且方向向量為的光線,經(jīng)直線反射后通過左頂點(diǎn)D.

(I)求橢圓的方程;

(II)過點(diǎn)F作斜率為的直線交橢圓于A, B兩點(diǎn),M為AB的中點(diǎn),直線OM (0為原點(diǎn))與直線交于點(diǎn)P,若滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年12月,針對(duì)國內(nèi)天然氣供應(yīng)緊張的問題,某市政府及時(shí)安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅(jiān)戰(zhàn).某研究人員為了了解天然氣的需求狀況,對(duì)該地區(qū)某些年份天然氣需求量進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需求量 (單位:千萬立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測(cè)2018年該地區(qū)的天然氣需求量;

(Ⅱ)政府部門為節(jié)約能源出臺(tái)了《購置新能源汽車補(bǔ)貼方案》,該方案對(duì)新能源汽車的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補(bǔ)貼金額劃分為三類,A類:每車補(bǔ)貼1萬元,B類:每車補(bǔ)貼2.5萬元,C類:每車補(bǔ)貼3.4萬元.某出租車公司對(duì)該公司60輛新能源汽車的補(bǔ)貼情況進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

為了制定更合理的補(bǔ)貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補(bǔ)貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進(jìn)一步跟蹤調(diào)查,求恰好有1輛車享受3.4萬元補(bǔ)貼的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l13x2y10,直線l2axby10其中a,b{1,2,3,4,5,6}

(1)求直線l1l2的概率;

(2)求直線l1l2的交點(diǎn)位于第一象限的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案