如圖,A是⊙O上的點,PC與⊙O相交于B、C兩點,點D在⊙O上,CD∥AP,AD與BC交于E,F(xiàn)為CE上的點,若∠EDF=∠P,BE=8,EF=4,F(xiàn)C=5,則PB=
 
考點:與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:證明△DEF∽△CED,求出AE,證明△DEF∽△PEA,根據(jù)三角形相似得到對應(yīng)線段成比例,把比例式轉(zhuǎn)化為乘積式,求出EP,再證明EP:EC=AE:ED,求出EC,利用相交弦定理求出EB,即可得出結(jié)論.
解答: 解:∵CD∥AP,
∴∠P=∠C,
∵∠EDF=∠P,
∴∠EDF=∠C,
∵∠DEF=∠CED,
∴△DEF∽△CED.
∴DE:CE=EF:ED,
∵EF=4,F(xiàn)C=5,
∴DE=6,
∵AE•ED=BE•EC,
∴AE=12
∵∠P=∠EDF,∠DEF=∠PEA,
∴△DEF∽△PEA.
∴DE:PE=EF:EA.
即EF•EP=DE•EA.
∵AE=12,ED=6,EF=4,
∴4•EP=72,
∴EP=18,
∵CD∥AP,
∴EP:EC=AE:ED,
∴EC=9,
∵弦AD、BC相交于點E,
∴DE•EA=CE•EB,
∴EB=8,
∴PB=EP-EB=10.
故答案為:10.
點評:本題考查三角形相似的判斷,考查相交弦定理,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正實數(shù)a,b滿足2a+b=ab,則a+b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x-y-k=0(k>0)與圓x2+y2=4交于不同的兩點A,B,O是坐標(biāo)原點,且有|
OA
+
OB
|≥
3
3
|
AB
|,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(-1,0)且斜率為k(k>0)的直線與拋物線y2=4x相交于B,C兩點,若B為AC中點,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域內(nèi)的任意實數(shù)x,函數(shù)f(x)=
x2+(a-1)x-2a+2
2x2+ax-2a
的值恒為正數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

祖暅原理對平面圖形也成立,即夾在兩條平行線間的兩個平面圖形被任意一條平行于這兩條直線的直線截得的線段總相等,則這兩個平面圖形面積相等.利用這個結(jié)論解答問題:函數(shù)f(x)=2x、g(x)=2x-1與直線x=0,x=1所圍成的圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
3
|a-2x|的圖象關(guān)于直線x=1對稱,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個各面都涂了油漆的正方體,切割成125個同樣大小的小正方體.經(jīng)過攪拌后,從中隨機(jī)取出一個小正方體,記它的涂油漆面數(shù)為X,則P(X≥2)=(  )
A、
44
125
B、
81
125
C、
27
125
D、
54
125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的可導(dǎo)函數(shù)f(x)滿足:f′(x)+f(x)<0,則
f(m-m2)
em2-m+1
與f(1)(e是自然對數(shù)的底數(shù))的大小關(guān)系是( 。
A、
f(m-m2)
em2-m+1
>f(1)
B、
f(m-m2)
em2-m+1
<f(1)
C、
f(m-m2)
em2-m+1
≥f(1)
D、不確定

查看答案和解析>>

同步練習(xí)冊答案