1+tanα
1-tanα
=2003,  則
1
cos2α
+tan2α
=
2003
2003
分析:首先進行化切為弦,通分整理,分子和分母用二倍角公式并且都進行因式分解,約分以后,分子分母再同除以角的余弦,完成把弦化切的過程,得到結果.
解答:解:
1
cos2α
+tan2α
=
sin2α+1
cos2α
=
1+2sinαcosα
cos2α-sin2α 

=
(sinα+cosα)2
(cosα+sinα)(cosα-sinα)
=
sinα+cosα
cosα-sinα
=
1+tanα
1-tanα
=2003

故答案為:2003
點評:本題考查三角函數(shù)的化簡求值,本題解題的關鍵是看出弦切互化,利用同角的三角函數(shù)的關系來完成簡化的目的,本題是一個中檔題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點P(3t,t+1)(t≠0,t≠
1
2
)
在角α的終邊上.
(1)求tanα;
(2)若α=
π
6
,求實數(shù)t的值;
(3)記S=
1-sin2α+cos2α
1-sin2α-cos2α
,試用t將S表示出來.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等比數(shù)列{an}的前n項和,
(1)若S3,S9,S6成等差數(shù)列,求證:a2,a8,a5成等差數(shù)列.
(2)設p,r,t,k,m,n∈N*,且p,r,t成等差數(shù)列,若pSk,rSm,tSn成等差數(shù)列,試判斷pak+1,ram+1,tan+1三者關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A、B、C、D的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),D(-2cosα,-t),α∈(
π
2
,
2
).
(1)若|
AC
|=|
BC
|,求角α的值;
(2)若
AC
BC
=-1,求
2sin2α+2sinαcosα
1+tanα
的值.
(3)若f(α)=
OC
OD
-t2+2
在定義域α∈(
π
2
2
)有最小值-1,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=t,a2=t2(t>0),且an+1=(t+1)an-tan-1(n≥2).
(1)若t≠1,求證:數(shù)列{an+1-an}是等比數(shù)列.
(2)求數(shù)列{an}的通項公式.
(3)若
1
2
<t<2,bn=
2an
1+
a
2
n
(n∈N*)
,試比較
1
b1
+
1
b2
+
1
b3
+…+
1
bn
2n-2-
n
2
的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A、B、C、D的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),D(-2cosα,-t),α∈(
π
2
,
2
).
(1)若|
AC
|=|
BC
|,求角α的值;
(2)若
AC
BC
=-1,求
2sin2α+2sinαcosα
1+tanα
的值.
(3)若f(α)=
OC
OD
-t2+2
在定義域α∈(
π
2
2
)有最小值-1,求t的值.

查看答案和解析>>

同步練習冊答案