如圖,在四棱錐ABCD-PGFE中,底面ABCD是直角梯形,側(cè)棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.

(Ⅰ)求PD與BC所成角的大;
(Ⅱ)求證:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.

(1)60o
(2)根據(jù)題意,由于BC⊥AC,且有PA⊥BC,則可以根據(jù)線面垂直的判定定理來(lái)得到結(jié)論。
(3)60 

解析試題分析:(Ⅰ)取的AB中點(diǎn)H,連接DH,易證BH//CD,且BD="CD" 1分
所以四邊形BHDC為平行四邊形,所以BC//DH
所以∠PDH為PD與BC所成角2分
因?yàn)樗倪呅,ABCD為直角梯形,且∠ABC=45o, 所以DA⊥AB
又因?yàn)锳B=2DC=2,所以AD=1, 因?yàn)镽t△PAD、Rt△DAH、Rt△PAH都為等腰直角三角形,所以PD=DH=PH=,故∠PDH=604分
(Ⅰ)連接CH,則四邊形ADCH為矩形, ∴AH=DC  又AB=2,∴BH=1
在Rt△BHC中,∠ABC=45o , ∴CH=BH=1,CB= ∴AD=CH=1,AC=
∴AC2+BC2=AB2   ∴BC⊥AC……6分 又PA平面ABCD∴PA⊥BC ……7分
∵PA∩AC=A∴BC⊥平面PAC  8分
(Ⅲ)如圖,分別以AD、AB、AP為x軸,y軸,z軸建立空間直角坐標(biāo)系,則由題設(shè)可知:

A(0,0,0),P(0,0,1),C(1,1,0),D(1,0,0),
=(0,0,1),=(1,1,-1) 9分
設(shè)m=(a,b,c)為平面PAC的一個(gè)法向量, 則,即
設(shè),則,∴m=(1,-1,0)  10分
同理設(shè)n=(x,y,z) 為平面PCD的一個(gè)法向量,求得n=(1,1,1) 11分
 12分
所以二面角A-PC-D為60 13分
考點(diǎn):空間角和距離的求解
點(diǎn)評(píng):主要是考查了空間中線面角和二面角的平面角的求解,以及線面垂直的判定,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,,,設(shè)頂點(diǎn)A在底面上的射影為R.
(Ⅰ)求證:
(Ⅱ)設(shè)點(diǎn)在棱上,且,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知三棱錐的側(cè)棱兩兩垂直,且,的中點(diǎn).

(1)求異面直線所成的角的余弦值
(2)求二面角的余弦值
(3)點(diǎn)到面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.

(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對(duì)于AD上任意點(diǎn)H,CH是否與面ABD垂直。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在四棱錐中,底面是邊長(zhǎng)為2的正方形,側(cè)棱平面,且為底面對(duì)角線的交點(diǎn),分別為棱的中點(diǎn)

(1)求證://平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱柱中,側(cè)棱底面,

(Ⅰ)求證:平面
(Ⅱ)若直線與平面所成角的正弦值為,求的值
(Ⅲ)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼成一個(gè)新的四棱柱,規(guī)定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問(wèn)共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的解析式。(直接寫出答案,不必說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知多面體中,⊥平面,⊥平面, ,,的中點(diǎn).

(1)求證:⊥平面
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,平面⊥平面,,四邊形是直角梯形,,, ,分別為的中點(diǎn).

(Ⅰ) 用幾何法證明:平面;
(Ⅱ)用幾何法證明:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平面,平面,△為等邊三角形,,的中點(diǎn).

(1)求證:平面
(2)求證:平面平面;
(3)求直線和平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案