已知AB是圓O的直徑,C為圓O上一點,CD⊥AB于點D,弦BE與CD、AC分別交于點M、N,且MN=MC
(1)求證:MN=MB;
(2)求證:OC⊥MN。
詳見解析
解析試題分析:(1)連結,根據直徑所對的圓周角是直角,得,根據等量代換得,最后利用三角形的性質即可得出,從而得到;
(2)設,根據,得到,再由(1)知,,等量代換得,即即可證出結論.此題比較基礎,屬于基礎題型,平時多加練習,能夠拿滿分.
試題解析:證明:(1)連結AE,BC,∵AB是圓O的直徑,∴∠AEB=90°,∠ACB=90°∵MN=MC,∴∠MCN=∠MNC又∵∠ENA=∠MNC,∴∠ENA=∠MCN∴∠EAC=∠DCB,∵∠EAC=∠EBC,∴∠MBC=∠MCB,∴MB=MC∴MN=MB. 5分
(2)設OC∩BE=F,∵OB=OC,∴∠OBC=∠OCB
由(1)知,∠MBC=∠MCB,∴∠DBM=∠FCM.又∵∠DMB=∠FMC
∴∠MDB=∠MFC,即∠MFC=90°∴OC⊥MN. 10分
考點:與圓有關的問題
科目:高中數學 來源: 題型:解答題
已知和相交于A、B兩點,過A點作切線交于點E,連接EB并延長交于點C,直線CA交于點D,
(1)當點D與點A不重合時(如圖1),證明:ED2=EB·EC;
(2)當點D與點A重合時(如圖2),若BC=2,BE=6,求的直徑長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,是圓的直徑,是延長線上的一點,是圓的割線,過點作的垂線,交直線于點,交直線 于點,過點作圓的切線,切點為.
(1)求證:四點共圓;(2)若,求的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,D,E分別為△ABC的邊AB,AC上的點,且不與△ABC的頂點重合.已知AE的長為m,AC的長為n,AD,AB的長是關于x的方程x2-14x+mn=0的兩個根.
(1)證明:C,B,D,E四點共圓;
(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,D,E分別為△ABC邊AB,AC的中點,直線DE交△ABC的外接圓于F,G兩點,若CF∥AB,證明:
(1)CD=BC;
(2)△BCD∽△GBD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com