分析 (1)要使樹被圈進去,則ABCD中BC≥a,CD≥4,由此可確定函數(shù)的變量的范圍.設長BC=x米,寬CD=(16-x)米,所以面積y=f(x)=x(16-x)=-x2+16x;
(2)由(1)得,y=f(x)=-x2+16x=-(x-8)2+64,x∈[a,12],由于對稱軸x=8,根據0<a<12,故要進行分類討論:即8≤a<12;4≤a<8;0<a<4,從而可求y=f(x)的最大值.
解答 解:(1)要使樹被圈進去,則ABCD中BC≥a,CD≥4,
因為籬笆長為16米,所以當長BC=x米時,寬CD=(16-x)米.
由于BC≥a,CD≥4,故a≤x≤12,
所以面積y=f(x)=x(16-x)=-x2+16x,其定義域為x∈[a,12];
(2)由(1)得,y=f(x)=-x2+16x=-(x-8)2+64,x∈[a,12]
對稱軸x=8,又因為0<a<12,
所以,當8≤a<12時,x=a時,ymax=-a2+16a;
當4≤a<8時,x=8時,ymax=64;
當0<a<4時,x=8時,ymax=64.
點評 本題以實際問題為載體,考查函數(shù)模型的構建,考查二次函數(shù)最值的求解,解題的關鍵是讀懂題意,正確分類.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$:$\sqrt{2}$ | B. | $\sqrt{2}$:1 | C. | $\sqrt{3}$:1 | D. | 2:1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | e${\;}^{{x}_{2}}$f(x1)>e${\;}^{{x}_{1}}$f(x2) | B. | e${\;}^{{x}_{2}}$f(x1)<e${\;}^{{x}_{1}}$f(x2) | ||
C. | e${\;}^{{x}_{1}}$f(x1)>e${\;}^{{x}_{2}}$f(x2) | D. | e${\;}^{{x}_{1}}$f(x1)<e${\;}^{{x}_{2}}$f(x2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com