【題目】某電視臺(tái)舉行文藝比賽,并通過(guò)網(wǎng)絡(luò)對(duì)比賽進(jìn)行直播.比賽現(xiàn)場(chǎng)由5名專(zhuān)家組成評(píng)委給每位參賽選手評(píng)分,場(chǎng)外觀眾也可以通過(guò)網(wǎng)絡(luò)給每位參賽選手評(píng)分.每位選手的最終得分需要綜合考慮專(zhuān)家評(píng)分和觀眾評(píng)分.某選手參與比賽后,現(xiàn)場(chǎng)專(zhuān)家評(píng)分情況如下表.另有約數(shù)萬(wàn)名場(chǎng)外觀眾參與評(píng)分,將觀眾評(píng)分按照分組,繪成頻率分布直方圖如下圖.
(Ⅰ)求a的值,并用頻率估計(jì)概率,估計(jì)某場(chǎng)外觀眾評(píng)分不小于9的概率;
(Ⅱ)從現(xiàn)場(chǎng)專(zhuān)家中隨機(jī)抽取2人,求其中評(píng)分高于9分的至少有1人的概率;
(Ⅲ)考慮以下兩種方案來(lái)確定該選手的最終得分.
方案一:計(jì)算所有專(zhuān)家與觀眾評(píng)分的平均數(shù)作為該選手的最終得分;
方案二:分別計(jì)算專(zhuān)家評(píng)分的平均數(shù)和觀眾評(píng)分的平均數(shù),用作為該選手最終得分.
請(qǐng)直接寫(xiě)出與的大小關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開(kāi)始,不分文理科;2020年開(kāi)始,高考總成績(jī)由語(yǔ)數(shù)外3門(mén)統(tǒng)考科目和物理、化學(xué)等六門(mén)選考科目構(gòu)成.將每門(mén)選考科目的考生原始成績(jī)從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).
某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布N(60,169).
(Ⅰ)求物理原始成績(jī)?cè)趨^(qū)間(47,86)的人數(shù);
(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.
(附:若隨機(jī)變量,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①殘差平方和越小的模型,擬合的效果越好;
②用相關(guān)指數(shù)來(lái)刻畫(huà)回歸效果,越小,說(shuō)明模型擬合的效果越好;
③散點(diǎn)圖中所有點(diǎn)都在回歸直線附近;
④隨機(jī)誤差滿足,其方差的大小可用來(lái)衡量預(yù)報(bào)精確度.
其中正確命題的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,經(jīng)過(guò)點(diǎn)B(0,1).設(shè)橢圓G的右頂點(diǎn)為A,過(guò)原點(diǎn)O的直線l與橢圓G交于P,Q兩點(diǎn)(點(diǎn)Q在第一象限),且與線段AB交于點(diǎn)M.
(Ⅰ)求橢圓G的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線l,使得△BOP的面積是△BMQ的面積的3倍?若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:xy2=0,拋物線C:y2=2px(p>0).
(1)若直線l過(guò)拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對(duì)稱(chēng)的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為;
②求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
(2)設(shè)函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn).
(i)求實(shí)數(shù)的取值范圍;
(ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般來(lái)說(shuō),一個(gè)班級(jí)的學(xué)生學(xué)號(hào)是從1 開(kāi)始的連續(xù)正整數(shù),在一次課上,老師隨機(jī)叫起班上8名學(xué)生,記錄下他們的學(xué)號(hào)是:3、21、17、19、36、8、32、24,則該班學(xué)生總數(shù)最可能為( )
A. 39人B. 49人C. 59人D. 超過(guò)59人
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)國(guó)家號(hào)召,某校組織部分學(xué)生參與了“垃圾分類(lèi),從我做起”的知識(shí)問(wèn)卷作答,并將學(xué)生的作答結(jié)果分為“合格”與“不合格”兩類(lèi)與“問(wèn)卷的結(jié)果”有關(guān)?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認(rèn)為“性別”與“問(wèn)卷的結(jié)果”有關(guān)?
(2)在成績(jī)合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再?gòu)倪@9人中隨機(jī)抽取5人發(fā)送獎(jiǎng)品,記拿到獎(jiǎng)品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com