已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓的方程為它的離心率為,一個(gè)焦點(diǎn)是(-1,0),過直線上一點(diǎn)引橢圓的兩條切線,切點(diǎn)分別是A、B.
(1)求橢圓的方程;
(2)若在橢圓上的點(diǎn)處的切線方程是.求證:直線AB恒過定點(diǎn)C,并求出定點(diǎn)C的坐標(biāo);
(3)是否存在實(shí)數(shù),使得求證: (點(diǎn)C為直線AB恒過的定點(diǎn)).若存在,請(qǐng)求出,若不存在請(qǐng)說明理由
(I)橢圓方程為. (II)直線AB恒過定點(diǎn). (III)
解析試題分析:(I)設(shè)橢圓方程為的焦點(diǎn)是,故,又,所以,所以所求的橢圓方程為. 4分
(II)設(shè)切點(diǎn)坐標(biāo)為,,直線上一點(diǎn)M的坐標(biāo),則切線方程分別為,,又兩切線均過點(diǎn)M,即,即點(diǎn)A,B的坐標(biāo)都適合方程,故直線AB的方程是,顯然直線恒過點(diǎn)(1,0),故直線AB恒過定點(diǎn). 8分
(III)將直線AB的方程,代入橢圓方程,得
,即,
所以,不妨設(shè),
,同理, 12分
所以
,
即, 14分
考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,存在性問題研究。
點(diǎn)評(píng):難題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓、標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了橢圓的幾何性質(zhì)。對(duì)于存在性問題,往往先假設(shè)存在,利用已知條件加以探究,以明確計(jì)算的合理性。本題(III)通過假設(shè)t,利用韋達(dá)定理進(jìn)一步確定相等長(zhǎng)度,明確了關(guān)系。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓:的左、右焦點(diǎn)分別為,已知橢圓上的任意一點(diǎn),滿足,過作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.
(1)求橢圓的方程;
(2)若過的直線交橢圓于兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標(biāo)平面上,為原點(diǎn),為動(dòng)點(diǎn),,. 過點(diǎn)作軸于,過作軸于點(diǎn),. 記點(diǎn)的軌跡為曲線,
點(diǎn)、,過點(diǎn)作直線交曲線于兩個(gè)不同的點(diǎn)、(點(diǎn)在與之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點(diǎn),與曲線相切于點(diǎn),記點(diǎn)的橫坐標(biāo)為,其中.
(1)當(dāng)時(shí),求的值和點(diǎn)的坐標(biāo);
(2)當(dāng)實(shí)數(shù)取何值時(shí),?并求出此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過點(diǎn)且方向向量為的直線交橢圓于兩點(diǎn),交軸于點(diǎn),且.
(1)求直線的方程;
(2)求橢圓長(zhǎng)軸長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求面積;
(Ⅲ)求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為
(1)求橢圓C的方程
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知點(diǎn),參數(shù),點(diǎn)Q在曲線C:上.
(1)求在直角坐標(biāo)系中點(diǎn)的軌跡方程和曲線C的方程;
(2)求|PQ|的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com