(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點,是橢圓上動點.

(Ⅰ)求橢圓方程;
(Ⅱ)當時,求面積;
(Ⅲ)求取值范圍.

(Ⅰ) ;(Ⅱ)  ;(Ⅲ)

解析試題分析:(Ⅰ) 
∴橢圓方程為           4分
(Ⅱ)設,
,在 中,由余弦定理得:
 
         7分
              9分
(Ⅲ)設 ,則 ,即 
 ,∴
         11分
 ,∴
         13分
考點:本題考查了橢圓方程、橢圓性質(zhì),解三角形,向量的數(shù)量積.
點評:解答時注意以下的轉(zhuǎn)化:⑴若直線與圓錐曲線有兩個交點,對待交點坐標是“設而不求”的原則,要注意應用韋達定理處理這類問題; ⑵平面向量與解析幾何綜合題,遵循的是平面向量坐標化,應用的是平面向量坐標運算法則還有兩向量平行、垂直來解決問題,這就要求同學們在基本概念、基本方法、基本能力上下功夫.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

設命題p:函數(shù)上是增函數(shù);命題q:方程有兩個不相等的負實數(shù)根。求使得pq是真命題的實數(shù)對為坐標的點的軌跡圖形及其面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

Δ兩個頂點的坐標分別是,邊所在直線的斜率之積等于,求頂點的軌跡方程,并畫出草圖。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知中心在原點,焦點在坐標軸上的橢圓的方程為它的離心率為,一個焦點是(-1,0),過直線上一點引橢圓的兩條切線,切點分別是A、B.
(1)求橢圓的方程;
(2)若在橢圓上的點處的切線方程是.求證:直線AB恒過定點C,并求出定點C的坐標;
(3)是否存在實數(shù),使得求證: (點C為直線AB恒過的定點).若存在,請求出,若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點軸上的動點,點軸上的動點,點為定點,且滿足,.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點且斜率為的直線與曲線交于兩點,試判斷在軸上是否存在點,使得成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積. 
 
(2)過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點. 用表示A,B之間的距離;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,直線l過點F與橢圓C交于不同的兩點A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)如圖,橢圓C方程為 (),點為橢圓C的左、右頂點。

(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標準方程;
(2)若直線與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足,求證:直線過定點,并求出該點的坐標。 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的中點在原點O,焦點在x軸上,點是其左頂點,點C在橢圓上且·="0," ||=||.(點C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個不同點,求面積的最大值,并求此時直線的方程.

查看答案和解析>>

同步練習冊答案